期刊文献+

人眼视觉感知模型指导的有理函数图像插值 被引量:4

Rational function for image interpolation based on human contrast sensitivity
下载PDF
导出
摘要 基于有理函数模型提出了一种新的自适应图像插值算法.此类有理函数具有简单显性数学表达式,且含有可调参数.当两个参数都等于1时,有理函数变为双三次插值函数.基于有理函数构造图像插值曲面,原始图像通过等值线分析自适应地分解为平滑和边缘两部分.其中自适应阈值根据有理函数构造原理来确定,思路是将人眼视觉感知与图像结构相融合,对于像素结构简单视觉关注度低的平滑区域,采用双三次插值.对于像素结构复杂视觉关注度高的边缘区域,采用有理插值处理,参数由人眼对比敏感特性来确定.实验表明,该算法细节信息保持优于当前经典的图像插值算法,具有较好的视觉效果. A new image interpolation algorithm based on the rational function model with both smoothing and surface constraints is proposed. The rational function has a simple and explicit expression with two parameters. The image edge regions can be detected adaptively by using contour analysis. Basically, the detective threshold is selected based on the rational function construction. Selecting different parameters in the rational function model, the edge regions and smooth regions are interpolated by bicubic interpolation and rational interpolation, respectively. The optimal rational interpolation parameters can be obtained with a set of exact solutions by solving a maximization problem based on the contrast sensitivity enhancement of human eyes. Experimental results demonstrate that the proposed method achieves competitive performance with the state-of-the-art interpolation algorithms, especially in image details features.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2016年第1期151-156,共6页 Journal of Xidian University
基金 国家自然科学基金资助项目(61373080 61202150 61202364)
关键词 有理函数 图像插值 人眼对比敏感度 等值线分析 参数自适应优化 rational interpolation image interpolation human contrast sensitivity contour analysis adaptively optimize parameters
  • 相关文献

参考文献13

  • 1杨贞萍,牛海军,丁磊.一种新的NSCT超分辨率图像复原技术[J].西安电子科技大学学报,2012,39(1):34-37. 被引量:8
  • 2WANG L F, XIANG S M, MENG G F, et al. Edge-directed Single-image Super-resolution via Adaptive Gradient Magnitude Self-interpolation [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(8) :1289- 1299.
  • 3DONG W S, ZHANG L, LUKAC R, et al. Sparse Representation Based Image Interpolation With Nonlocal Autoregressive Modeling[J]. IEEE Transactions on Image Processing, 2013, 22(4) : 1328-1394.
  • 4LI X, ORCHARD M T. New Edge-directed Interpolation[J].IEEE Transactions on Image Processing, 2001, 10(10) : 1521-1527.
  • 5ASUNI N, GIACHETTI A. Accuracy Improvements and Artifacts Removal in Edge based Image Interpolation [C]// Proceedings of the 3rd International Conference on Computer Vision Theory and Applications: 1. Setubal: Institude for Systems and Technologies of Information, Control and Communication, 2008: 58-65.
  • 6ZHANG X, WU X. Image Interpolation by Adaptive 2-D Autoregressive Modeling and Soft-decision Estimation [J]. IEEE Transactions on Image Processing, 2008, 17(6) : 887-896.
  • 7ZHANG L, WU X. Image Interpolation via Directional Filtering and Data Fusion [J]. IEEE Transactions on Image Processing, 2006, 15(8): 2226-2238.
  • 8HU M, TAN J Q. Adaptive Osculatory Rational Interpolation for Image Processing [J]. Journal of Computational and Applied Mathematics, 2006, 195(1): 46-53.
  • 9WANG Q M, SHI W Z. Utilizing Multiple Subpixel Shifted Images in Subpixel Mapping with Image Interpolation[J].. IEEE Geoscience and Remote Sensing Letters. 2013, 11(4):798-802.
  • 10TANG Y, YUAN Y, YAN P, et al. Greedy Regression in Sparse Coding Space for Single-image Super-resolution[J]. Journal of Visual Communication and Image Representation, 2013, 24(2) : 148-159.

二级参考文献12

  • 1Do M N, Vetterli M. The Contourlet Transform: an Efficient Directional Multiresolution Image Representation[J].IEEE Trans on Image Processing, 2005, 14(12) : 2091-2106.
  • 2da Cunha A L, Zhou Jianping, Do M N. The Nonsubsampled Contourlet Transform: Theory, Design, and Applications[J]. IEEE Trans on Image Processing, 2006, 15(10) : 3089-3101.
  • 3Burt P J, Adelson E H. The Laplaeian Pyramid as a Compact Image Code[J]. IEEE Trans on Communication, 1983, 31 (4) : 532-540.
  • 4Do M N, Vetterli M. Framing PyramidsD]. IEEE Trans on Signal Processing, 2003, 51(9) : 2329-2342.
  • 5Lu Y M, Do M N. Multidimensional Directional Filter Banks and Surfacelets[J]. IEEE Trans on Image Processing, 2007, 16(4): 918-931.
  • 6张海霞.基于Horn-Schunck方法的光流计算模型.科技信息,2008,:220-222.
  • 7Lucas B D, Kanade T. An Iterative Image Registration Technique with an Application to Stereo vision[C]//Proc 7th Intel Joint Conf on Artificial Intelligence. Vancouver: Morgan Kaufmann Publishers, 1981: 674-679.
  • 8薛正亮.图像超分辨率重建技术研究[D].南京:南京航空航天大学,2008.
  • 9刘琚,乔建苹.基于学习的超分辨率重建技术[J].智能系统学报,2009,4(3):199-207. 被引量:8
  • 10徐继文,王言英.Application of Wavelet Algorithm to Spectral Analysis of Oceanic Waves and Offshore Structure Responses[J].China Ocean Engineering,2009,23(4):635-644. 被引量:2

共引文献7

同被引文献24

  • 1Soltan E A,Elkhamy S E. Wavelet based image interpolation with a least squares alogorithm[J]. Computer Engineering Con- ference,2010,10(21) : 103-106.
  • 2Hung K W,Siu W C. Robust soft-decision interpolation using weighted least squares[J]. IEEE Transactions on Image Pro- cessing,2012,21(3) :1061-1069.
  • 3Zhang Y F,Bao F X,Zhang C M. A weighted bivariate blending rational interpolation function and visualization control[J]. Journal of Computational Analysis and Applications, 2012,14(7) : 1303-1320.
  • 4Zhang X J, Wu X L. Image interpolation by adaptive 2-d autoregressive modeling and soft-decision estimation[J]. IEEE Transactions on Image Processing, 2008,17(6) : 887-896.
  • 5Chang S G,Cvetkovic Z,Vetterli M. Locally adaptive wavelet-based image interpolation[J]. IEEE Transactions on Image Pro- cessing,2006,15(7) : 1471 1485.
  • 6Matsuo K, Aoki Y. Depth interpolation using tangent planes on super pixels of a color image[J]. Electronics and Communica- tions in Japan, 2015,98(12) : 17-29.
  • 7He H,Siu W C. Single image super-resolution using Gaussian process regression[J]. IEEE Transactions on Computer Vision and Pattern Recognition, 2011,42 (7) : 449-456.
  • 8Dong W S, Zhang L, Lukac R, et al. Spare representation based image interpolation with non-local autoregressive modeling [J]. IEEE Transactions on Image Processing,2013,22(4) :1382-1394.
  • 9Jia X F,Zhao B. Demosaicing algorithm for color filter arrays based on SVMs[J]. International Journal of Computer Science Issues,2013,10(1) :212-217.
  • 10肖蔓君,陈思颖,倪国强,温焱.基于Sigmoid函数局部视觉适应模型的真实影像再现[J].光学学报,2009,29(11):3050-3056. 被引量:10

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部