期刊文献+

基于稀疏分类算法的矿物传送设备故障诊断方法 被引量:4

Fault diagnosis method of mineral transmission equipment based on sparse classification algorithm
下载PDF
导出
摘要 针对现有基于特征频率识别的矿物传送设备故障诊断方法存在易受强噪声干扰的问题,提出了基于稀疏分类算法的矿物传送设备故障诊断方法。首先,利用计算机测取设备已知故障类型的振动信号,并对其进行傅里叶变换;然后,以傅里叶变换系数构造训练字典,将待测故障类型的振动信号傅里叶变换系数在该训练字典上进行稀疏分解,求取稀疏系数;最后,利用重构信号最小误差判别故障类型。仿真和测试结果表明,该方法能有效诊断出矿物传送设备中轴承的故障类型,为煤矿传送设备的故障监测提供了一种新方法。 In view of the problem that the existing fault diagnosis methods based on feature frequency identification for mineral transmission equipments are susceptible to strong noise,a new fault diagnosis method based on sparse classification algorithm for mineral transmission equipment was proposed.Firstly,vibration signals for the known fault types of equipment are collected by computer and transformed by Fourier transformation.Then,the Fourier transformation coefficient vectors of test vibration signal are sparsely coded on a dictionary,which is constructed by merging the Fourier transformation coefficientvectors of the known vibration signals,so as to get sparse coefficient.At last,the fault types of the test samples are labeled by identifying their minimal reconstruction errors.The simulation and test results demonstrate that the method can effectively diagnose the fault type of bearing of mineral transmission equipment,which provides a novel method for fault monitoring of transmission equipment in coal mine.
出处 《工矿自动化》 北大核心 2016年第2期43-46,共4页 Journal Of Mine Automation
基金 国家自然科学基金项目(61174106) 河南省高等学校科研重点项目(15B510017)
关键词 矿物传送设备 故障诊断 稀疏分类 傅里叶变换 mineral transmission equipment fault diagnosis sparse classification Fourier transformation
  • 相关文献

参考文献8

  • 1杨树莲,刘春潮.铁谱监测技术在煤矿设备故障诊断中的应用[J].中国煤炭,2002,28(4):42-43. 被引量:7
  • 2余安徽,黄小剑,白志青.基于红外技术的煤矿传送系统温度保护中的研究[J].科技信息,2012(21):438-438. 被引量:1
  • 3WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis ~ Machine Intelligence, 2009,31 (2) : 210 227.
  • 4陈才扣,杨静宇.Fisher大间距线性分类器[J].中国图象图形学报,2007,12(12):2143-2147. 被引量:12
  • 5KIM S J, KOH K, LUSTIG M, et al. A method for large-scale Ll-regularized least squares [ J ]. IEEE Journal on Selected Topics in Signal Processing, 2007, 1(4) :606-617.
  • 6LIU J, JI S, YE J. SLEP: sparse learning with efficient projections [ R ]. Phoenix: Arizona State University, 2009.
  • 7Case Western Reserve University. Case Western Reserve University bearing data center website [EB/OL]. [2015-09-20]. http://csegroups, case. edu/ bearingdatacenter/pages/download-data- file.
  • 8QI Zhiquan, TIAN Yingjie, SHI Yong. Robust twin support vector machine for pattern classification[J]. Pattern Recognition, 2013,46(1) .. 305-316.

二级参考文献11

  • 1戴景民,汪子君.红外热成像无损检测技术及其应用现状[J].自动化技术与应用,2007,26(1):1-7. 被引量:83
  • 2Fisher R A. The use of multiple measurements in taxonomic problems [J]. Annals of Eugenics, 1936, 7(part Ⅱ) : 179-188.
  • 3Vapnik V, The Nature of Statistical Learning Theory [ M ]. New York: Springer-Verlag, 1995.
  • 4Freund Yoav, Schapire R E. Large margin classification using the perceptron algorithm[ J ]. Machine Learning, 1999, 37 ( 3 ) : 277 - 296.
  • 5Huang Kai-zhu, Yang Hai-qin, King Irwin. Learning large margin classifiers locally and globally [ A ]. In: Proceedings of the Twenty-first International Conference on Machine Learning [ C ], Banff, Alberta, Canada, 2004, 69:268 - 275.
  • 6Phillips P J, Moon H, Rizvi S A, et al. The FERET evaluation methodology for face recognition algorithms [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (10) : 1090-1104.
  • 7Hsu C, Lin C. A comparison of methods for multiclass support vector machines [ J ]. IEEE Transactions on Neural Networks, 2002, 13(2) : 415-425.
  • 8赵娟娟,陈戈珩,李中华.基于TMS320DM642的图像采集模块设计[J].国外电子元器件,2008(1):12-14. 被引量:8
  • 9刘涛,贺彪,赵登超,张重雄.基于DSP+FPGA的红外成像系统设计[J].江西理工大学学报,2008,29(4):27-30. 被引量:6
  • 10马民,李明明.红外成像技术在煤矿中的应用[J].陕西煤炭,2009,28(5):103-105. 被引量:5

共引文献17

同被引文献19

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部