期刊文献+

融合粒子滤波和在线adaboost分类器的目标跟踪方法研究

下载PDF
导出
摘要 传统的粒子滤波由于粒子数目有限,且模板会发生变化,模板更新时会出现漂移甚至导致跟踪失败。文章提出了融合粒子滤波和在线adaboost分类器的目标跟踪方法。将粒子滤波的跟踪结果作为正样本更新样本集,再通过样本集训练分类器检测到目标位置。然后将检测和跟踪中具有较高置信度的结果作为最终目标位置。实验证明,这种方式可以很好地解决目标重现和漂移问题。 Due to the limited number of particles and the template is likely to change,the traditional particle filter can appear drift even result in an unsuccessful tracking when the template is updated. Incorporating online Adaboost classifier with particle filter frame is proposed in this paper for object tracking.In the process of particle filter ,firstly tracking results are regarded as positive samples to update sample set, then classifiers are trained by the sample set to detect the object position.Finally the higher confidence of the detection and tracking results is exceptded to be the final object position.Experiments show that this approach can solve the problem of the object reappear and drift.
出处 《信息通信》 2016年第1期11-14,共4页 Information & Communications
关键词 粒子滤波 在线adaboost分类器 目标跟踪 particle filter online Adaboost classifier object tracking
  • 相关文献

参考文献12

  • 1Katja N,Esther K M.Luc V G.An adaptive color-based particle filter[J].Image Vision Computing,21(1),pp.99-110,(2003).
  • 2Comaniciu D,Ramesh V,Meer P.“Real-time tracking of nonrigid objects using mean shift”[C].Computer Vision and Pattern Recognition.Hilton Head,SC,USA:IEEE Computer Society,pp.142-149,(2000).
  • 3Babu R V,Perez P,Bouthemy P.Robust tracking with motion estimation and local kernel-based color modeling.Image and Vision Computing,25(8),pp.1205-1216,(2007).
  • 4M.Sanjeev Arulampalam,Simon Maskell,Neil Gordon.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188.
  • 5Okuma K,Taleghani A,Freitas N.A Boosted Particle Filter:Multitarget Detection and Tracking[C]//Proc.of European Conference on Computer Vision.Prague,Czech Republic:[S.N.],2004.
  • 6Grabner H,Bischof H.On-line Boosting and Vision[C]//Proc.of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.New York,USA:IEEE Press,2006.
  • 7Maggio E_Cavallaro A.Hybrid particle filter and mean shift tracker with adaptive transition model[C].IEEE International Conference on Acoustics,Speech,and Signal Processing,II,221-224,(2005).
  • 8D.Comaniciu,V.Ramesh,P.Meer,Real-Time Tracking of Non-Rigid Objects using Mean Shift,Computer Vision and Pattern Recognition(2000)142-149.
  • 9K.Tieu and P.Viola.Boosting image retrieval.In Proc.CVPR,pages 228–235,2000.
  • 10N.Oza and S.Russell.Experimental comparisons of online and batch versions of bagging and boosting.In Proc.7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2001.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部