期刊文献+

基于小波变换振动能量分布的车窗电机故障检测算法研究 被引量:2

Research on window lifter motor fault diagnosis algorithm according WT and vibration energy distribution
下载PDF
导出
摘要 针对车窗电机的质量检测问题,对电机的结构、故障原因、振动信号时域、频域、时频特征、能量特征等方面进行了研究,对常见轴承故障频率进行了归纳计算,对传统的傅里叶变换频域检测、希尔伯特—黄变换时频检测进行了应用分析和归纳总结,并在此基础上创新性地结合了小波变换和能量分布概念,提出了一种基于八阶小波变换能量分布的车窗电机故障检测方法,利用振动加速度传感器和Lab View构建了一套完整的采集检测系统,并通过八阶小波变换分解及能量分布曲线构建,对故障和非故障电机的振动信号进行了对比研究。研究结果表明,该系统和方法能有效地反映不同电机的能量分布特征,能够对故障电机和合格电机进行很好的区分,显著提高车窗电机故障检测的效率和准确性。 Aiming at inspecting the quality of window motor,the motor structure,the cause of the problem,the vibration signal of time domain and frequency domain,time-frequency characteristics and energy characteristics were investigated. Common bearing fault frequency were summarized,traditional Fourier transform of frequency domain detecting,Hilbert-huang transform time-frequency analysis were summed up. Based on the innovative concept combines wavelet transform and energy distribution,a window motor fault detection method was presented to calculate the energy distribution after using eight order wavelet transform. A set of complete collection and detection system was constructed by using the vibration acceleration sensor and the Lab View. Vibration signals of the faulted and qualified motors were studied and contrasted through by 8 order wavelet decomposition and the building of energy distribution graph. The results indicate that the system and method can effectively reflect the features of energy distribution of different motors,distinguish faulted and qualified motors very well,and significantly improve the efficiency and accuracy of window motor fault diagnosis.
出处 《机电工程》 CAS 2016年第2期127-133,139,共8页 Journal of Mechanical & Electrical Engineering
基金 浙江省自然科学基金资助项目(LY12F03012)
关键词 频率特征 振动加速度传感器 LABVIEW 小波变换 能量分布 frequency characteristic vibration sensors Lab View wavelet transform(WT) energy distribution
  • 相关文献

参考文献16

  • 1LIN J, ZUO M J. Gearbox fauh diagnosis using adaptive wavelet filter [ J ]. Mechanical Systems and Signal Pro- cessing, 2003,17 (6) : 1259-1269.
  • 2CHENG J, YU D, YANG Y. A fault diagnosis approach for roller bearings based on EMD methodand AR model [ J ]. Mechanical Systems and Signal Processing, 2006,20 (2) : 350-362.
  • 3SHAH D, PATEL V. A review of dynamic modeling and fault identifications methods for rolling element bearing [ J ]. Procedia Technolo .2014.14 ( 1 ) :447-456.
  • 4梅宏彬.滚动轴承振动监测与诊断理论方法系统[M].北京:机械工业出版社,1996.
  • 5WU J D, CHEN J C. Continuous wavelet transform tech- nique for fault signal diagnosis of internal combustion engines [J]. NDT. & E. International,2006,39(4):304-311.
  • 6王全先.滚动轴承振动监测与诊断理论方法系统[M].北京:机械工业出版社,1996.
  • 7史坤鹏.机械设备故障诊断技术[M].武汉:华中科技大学出版社,2013.
  • 8王金东,代梅,夏法锋,赵海峰.基于EMD信息熵和支持向量机的往复压缩机轴承故障诊断[J].流体机械,2014,42(7):43-46. 被引量:17
  • 9欧伟光,张春良,郭莹莹,朱厚耀.基于形态分量分析的希尔伯特变换在滚动轴承故障诊断中的应用[J].机电工程技术,2015,44(3):1-5. 被引量:2
  • 10王国彪,何正嘉,陈雪峰,赖一楠.机械故障诊断基础研究“何去何从”[J].机械工程学报,2013,49(1):63-72. 被引量:281

二级参考文献103

共引文献333

同被引文献9

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部