摘要
The effect of ion motion in capillary-guided laser-driven plasma wake is investigated through rebuilding a two-dimensional analytical model.It is shown that laser pulse with the same power can excite more intense wakefield in the capillary of a smaller radius.When laser intensity exceeds a critical value,the effect of ion motion reducing the wakefield rises,which becomes significant with a decrease of capillary radius.This phenomenon can be attributed to plasma ions in smaller capillary obtaining more energy from the plasma wake.The dependence of the difference value between maximal scalar potential of wake for two cases of ion rest and ion motion on the radius of the capillary is discussed.
The effect of ion motion in capillary-guided laser-driven plasma wake is investigated through rebuilding a two-dimensional analytical model.It is shown that laser pulse with the same power can excite more intense wakefield in the capillary of a smaller radius.When laser intensity exceeds a critical value,the effect of ion motion reducing the wakefield rises,which becomes significant with a decrease of capillary radius.This phenomenon can be attributed to plasma ions in smaller capillary obtaining more energy from the plasma wake.The dependence of the difference value between maximal scalar potential of wake for two cases of ion rest and ion motion on the radius of the capillary is discussed.
基金
supported by National Natural Science Foundation of China(No.11247016)
the Natural Science Foundation of Jiangxi Province,China(Nos.2014ZBAB202001 and 20151BAB212010)
the Science Foundation for Youths of the Jiangxi Education Committee of China(No.GJJ14224)