期刊文献+

空间变化PSF非盲去卷积图像复原法综述 被引量:18

Review of non-blind deconvolution image restoration based on spatially-varying PSF
下载PDF
导出
摘要 传统的图像复原一般认为点扩散函数(PSF)是空间不变的,实际光学系统由于受到像差等因素的影响,并非严格的线性空间不变系统,基于空间变化PSF的非盲去卷积图像复原法逐渐体现其优越性。空间变化PSF的非盲去卷积图像复原法先准确估计图像空间变化的PSF,再利用非盲去卷积算法对图像进行复原,有利于恢复出高质量图像。本文从算法的角度综述了近几年提出的基于空间变化PSF的非盲去卷积图像复原方法,并对比了基于强边缘预测估计PSF的非盲去卷积法、基于模糊噪声图像对PSF估计非盲去卷积法等算法的优缺点,各算法分别在PSF估计精确度、振铃效应抑制效果、适用范围等方面体现出各自的优劣。空间变化PSF的非盲去卷积图像复原法的研究,有利于推进图像复原技术向更高水平发展,使光学系统往轻小型化方向发展,从而在多个科学领域发挥其重要作用。 Traditional image restoration is generally considered that point spread function (PSF) is space-in- variant. However, the actual optical system suffering from various optical aberrations can not be strictly linear space invariant. Non-blind deconvolution(NBD) algorithm of image restoration based on spatially-varying PSF (SVPSF) gradually embodies its superiority. NBD image restoration with SVPSF accurately estimates the spa- tially-varying PSF of the image at first, and then restores the image through NBD algorithm, which is condu- cive to the recovery of high quality images. From the perspective of algorithm, we review non-blind image res- toration method proposed in recent years based on spatially-varying PSF, as well as compare merits and draw- backs among NBD algorithm based on PSF estimation using sharp edge prediction, NBD algorithm based on blurred/noisy image pairs, and so on. These algorithms reflect pros and cons respectively in PSF estimation accuracy, inhibitory effect of ringing artifacts, and the scope of application. The study of the NBD image res- toration method based on SVPSF is beneficial to the development of image restoration technology to a higher level, which facilitates the optical systems to be smaller, so that it can play an important role in many scientif- ic fields.
出处 《中国光学》 EI CAS CSCD 2016年第1期41-50,共10页 Chinese Optics
基金 应用光学国家重点实验室基金资助项目(No.Y4223FQ141)~~
关键词 图像复原 空间变化PSF 非盲去卷积 PSF估计 image restoration spatially-varying PSF non-blind deconvolution PSF estimated
  • 相关文献

参考文献41

  • 1JADHAV R D,DESHMUKH P P. Parameter assumption for blind and non-blind deblurring in image processing[ J]. International J. Electrical, Electronics and Computer Engineering,2014,3 ( 1 ) :1-9.
  • 2KUNDUR D, HATZINAKOS D. Blind image deconvolution[ J]. Signal Processing Magazine,lEEE, 1996,13 (3) :43-64.
  • 3YAP K H, GUAN L, LIU W. A recursive soft-decision approach to blind image deconvolution [ J ]. Signal Processing, IEEE Transactions on,2003,51 ( 2 ) :515-526.
  • 4CAMPISI AND K. EGIAZARIAN. Blind Image Deconvolution:Theory and Applications[ M]. CRC Press,2007.
  • 5YIN H, HUSSAIN I. Blind source separation and genetic algorithm for image restoration [ C ]. 2006 International Conference on Advances in Space Technologies, IEEE ,2006 : 167-172.
  • 6JUSTEN L, RAMLAU R. A non-iterative regularization approach to blind deconvolution [ J ]. Inverse Problems ,2006,22 (3) : 771.
  • 7BABACAN S D, MOLINA R, KATSAGGELOS A K. Variational Bayesian blind deconvolution using a total variation prior [ J ]. IEEE Transactions on Image Processing,2009,18 ( 1 ) : 12-26.
  • 8KRAHMER F, LIN Y, MCADOO B, et al. Blind image deconvolution: Motion blur estimation [ J ]. IMA Preprints Series, 2006:2133-5.
  • 9OLIVEIRA J P, FIGUEIREDO M A T, BIOUCAS-DIAS J M. Blind Estimation of Motion Blur Parameters for Image Deconvolution [ M ]. Berlin Heidelberg : Springer,2007:604-611.
  • 10WIENER N. Extrapolation, Interpolation, and Smoothing of Stationary Time Series [ M ]. Cambridge, MA : MIT Press, 1949.

二级参考文献14

  • 1KUNDUR D,HATZINAKOS D. Blind image deconvolution[J].IEEE Signal Processing Magazine,1996,(03):43-64.doi:10.1109/79.489268.
  • 2FERGUS R,SINGH B,HERTZMANN A. Removing camera shake from a single photograph[J].ACM Transactions on Graphics,2006,(25):787-794.doi:10.1145/1141911.1141956.
  • 3SHAN Q,JIA J,AGARWALA A. High-quality motion deblurring from a single image[J].ACM Transactions on Graphics,2008,(03):73-78.
  • 4LEVIN A,WEISS Y,DURAND F. Understanding blind deconvolution algorithms[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,(12):2354-2367.
  • 5JIA J. Single image motion deblurring using transparency[A].Minneapolis,MN,2007.
  • 6JOSHI N,SZELISKI R,KRIEGMAN D J. Psf estimation using sharp edge prediction[A].Anchorage,AK,2008.
  • 7YANG H,ZHANG ZH B. Fusion of wave atom-based wiener shrinkage filter and joint non-iocal means filter for texture-preserving image deconvolution[J].Optical Engineering,2012,(06):67-75.
  • 8HUANG H Y,YANG H,MA S L. Gradient based image deconvolution[J].Journal of Electronic Imaging,2013,(01):013006.
  • 9HE K,SUN J,TANG X. Guided image filter[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,(06):1397-1409.
  • 10郭永彩,王婀娜,高潮.空间自适应和正则化技术的盲图像复原[J].光学精密工程,2008,16(11):2263-2267. 被引量:17

共引文献8

同被引文献106

引证文献18

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部