摘要
Based on the property of solutions of the nonlinear differential equation,this paper focuses on the behavior of solutions to the two-dimensional Ikeda model,especially the dependence of the solutions on the parameter.The dependency relationship of the two-dimensional Ikeda model on the parameter is revealed by a large sample of proper numerical simulations.With the parameter varying from 0 to 1,the numerical solutions change from a point attractor to periodic solutions,then to chaos,and end up with a limit cycle.Furthermore,the route from bifurcation to chaos is shown to be continuous period-doubling bifurcations.The nonlinear structures presented by the solution of the two-dimensional Ikeda model indicate that,by setting different model parameters,one can test a new method that will be adopted to study atmospheric or oceanic predictability and/or stability.The corresponding test results provide some useful information on the ability of the new approach overcoming the impacts of strong nonlinearity.
研究目的:探索二维Ikeda模式数值解的性态及解对模式参数的依赖创新要点:首次对二维Ikeda模式解的性态进行全面细致的探究;结合非线性方程相关理论和数值试验结果给出解的分析;探究了各个分岔点大致的分岔值。研究方法:数值试验与理论分析相结合重要结论:二维Ikeda模式对于控制参数具有高度依赖性;参数值从0到1的变化过程中,模式经历了从单点吸引子、多点吸引子、产生混沌直至出现极限环的变化;模式通过倍周期分岔的方式从分岔到混沌,且分岔过程是连续的。
基金
supported by the National Natural Science Foundation of China[grant number 41331174]