期刊文献+

Evaluation of the individual allocation scheme and its impacts in a dynamic global vegetation model 被引量:1

Evaluation of the individual allocation scheme and its impacts in a dynamic global vegetation model
下载PDF
导出
摘要 植物的生长策略不仅影响生态系统结构,而且对全球碳、水循环也起着至关重要的作用。本文以中国科学院大气物理研究所研发的第一代全球植被动力学模式IAP-DGVM1.0为平台,考察森林生态系统中树的个体生长方案及其影响。结果表明,与观测相比,模式高估了个体茎生物量,低估了个体叶生物量,从而进一步高估了中国森林生态系统的总生物量和成熟林受干扰后恢复的时间尺度,低估了生态系统净初级生产力和叶面积指数。 The strategies of plant growth play an important role not only in ecosystem structure,but also in global carbon and water cycles.In this work,the individual carbon allocation scheme of tree PFTs and its impacts were evaluated in China with Institute of Atmospheric Physics-Dynamic Global Vegetation Model,version 1.0(IAP-DGVM1.0)as a test-bed.The results showed that,as individual growth,the current scheme tended to allocate an increasing proportion of annual net primary productivity(NPP)to sapwood and decreasing proportions to leaf and root accordingly,which led to underestimated individual leaf biomass and overestimated individual stem biomass.Such biases resulted in an overestimation of total ecosystem biomass and recovery time of mature forests,and an underestimation of ecosystem NPP and tree leaf area index in China.
出处 《Atmospheric and Oceanic Science Letters》 CSCD 2016年第1期38-44,共7页 大气和海洋科学快报(英文版)
基金 supported by a project of the National Natural Science Foundation of China[grant number 41305098] Strategic Priority research Program of the Chinese Academy of Sciences[grant numbers XDA05110103 and XDA05110201]
关键词 植被模型 影响评价 配置方案 个体 净初级生产力 生态系统 叶面积指数 生物量 IAP-DGVM 1.0 individual allocation scheme biomass carbon residence time China
  • 相关文献

参考文献24

  • 1Aber, J. D., J. M. Melillo, K. J. Nadelhoffer, J. Pastor, and R. D. Boone. 1991. "Factors Controlling Nitrogen Cycling and Nitrogen Saturation in Northern Temperate Forest Ecosystems:' EcologicalApplications 1 (3): 303-315. doi: 10.2307/1941759.
  • 2Arora, V., and G. J. Boer. 2005. "A Parameterization of Leaf Phenology for the Terrestrial Ecosystem Component of Climate Models:' Global Change Biology 11: 39-59. doi: 10.1111/j.1365-2486.2004.00890.x.
  • 3Chapin, F. S. 1980. "The Mineral Nutrition of Wild Plants:' Annual Review of Ecology and Systematics 11: 233-260.
  • 4Cox, P. 2001. Description of the TRIFFID Dynamic Global Vegetation Model Bracknell: Hadley Centre Tech. Note 24, Hadley Centre, 16 pp.
  • 5Dong, M., G. M. Jiang, F. Z. Kong, Y. F. Wang, and Z. B. Zhang. 1997. The Observation and Analysis Standards of the Chinese Ecosystem Research Network: The Investigations, Observation and Analysis about Terrestrial Biomes. Beijing: Standards Press of China (in Chinese).
  • 6Friedlingstein, P., G. Joel, C. B. Field, and I.Y. Fung. 1999. "Toward an Allocation Scheme for Global Terrestrial Carbon Models:' Global Change Biology 5: 755-770. doi: 10.1046/j.1365- 2486.1999.00269.x.
  • 7Krinner, G., N. Viovy, N. de Noblet-Ducoudr, J. Oge, J. Polcher, P. Friedlingstein, R Ciais, S. Sitch, and I. C. Prentice. 2005. "A Dynamic Global Vegetation Model for Studies of the Coupled Atmosphere-biosphere System." Global Biogeochemical Cycles 19: GB1015. doi: 10.1029/2003GB002199.
  • 8Kucharik, C.J.,J.A. Foley, C. Delire, V. A. Fisher, M.T. Coe,J. D. Lenters, C. Young-Moiling, et al. 2000. "Testing the Performance of a Dynamic Global Ecosystem Model: Water Balance, Carbon Balance, and Vegetation Structure:' Global Biogeochemical Cycles 14 (3): 795-825. doi: 10.1029/1999GB001138.
  • 9Levis, S., G. B. Bonan, M. Vertenstein, and K.W. Oleson. 2004. The Community Land Model's Dynamic Global Vegetation Model (CLM-DGVM): Technical Description and User's Guide. NCAR Technical Note, NCAR/TN-459+IA. Boulder, CO: National Center for Atmospheric Research, 50 pp.
  • 10Li, F., X. D. Zeng, and S. Levis. 2012. "A Process-based Fire Parameterization of Intermediate Complexity in a Dynamic Global Vegetation Model." Biogeosciences 9: 2761-2780. doi: 10.5194/bg-9-2761-2012.

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部