摘要
Highly-dispersed BaLuFs:yb3+/Er3+ nanocrystals were prepared by a facile potassium sodium tartrate- assisted hydrothermal method. The average particle size was approximately 20-25 nm. The formation mechanism is discussed. Potassium sodium tartrate led to form a complex with an approximately three- dimensional network structure, which insured largely concurrent nucleation. As a result, we acquired uniform nanoparticles. The hydrothermal temperature, holding time, and pH value were important fac- tors affecting the formation of the BaLuF5 :yb3+/Er3+ nanocrystals. We investigated their influence on the formation and realized the optimal reaction parameters. Remarkably, potassium sodium tartrate also con- tributed to the biocompatibility and potential biomedical applications of BaLuFs :Yb3+/Er3+ nanocrystals by decomposing into small organic groups attached to the nanoparticles.
Highly-dispersed BaLuFs:yb3+/Er3+ nanocrystals were prepared by a facile potassium sodium tartrate- assisted hydrothermal method. The average particle size was approximately 20-25 nm. The formation mechanism is discussed. Potassium sodium tartrate led to form a complex with an approximately three- dimensional network structure, which insured largely concurrent nucleation. As a result, we acquired uniform nanoparticles. The hydrothermal temperature, holding time, and pH value were important fac- tors affecting the formation of the BaLuF5 :yb3+/Er3+ nanocrystals. We investigated their influence on the formation and realized the optimal reaction parameters. Remarkably, potassium sodium tartrate also con- tributed to the biocompatibility and potential biomedical applications of BaLuFs :Yb3+/Er3+ nanocrystals by decomposing into small organic groups attached to the nanoparticles.