期刊文献+

An efficient bi-objective optimization framework for statistical chip-level yield analysis under parameter variations 被引量:1

An efficient bi-objective optimization framework for statistical chip-level yield analysis under parameter variations
原文传递
导出
摘要 With shrinking technology,the increase in variability of process,voltage,and temperature(PVT) parameters significantly impacts the yield analysis and optimization for chip designs.Previous yield estimation algorithms have been limited to predicting either timing or power yield.However,neglecting the correlation between power and delay will result in significant yield loss.Most of these approaches also suffer from high computational complexity and long runtime.We suggest a novel bi-objective optimization framework based on Chebyshev affine arithmetic(CAA) and the adaptive weighted sum(AWS) method.Both power and timing yield are set as objective functions in this framework.The two objectives are optimized simultaneously to maintain the correlation between them.The proposed method first predicts the guaranteed probability bounds for leakage and delay distributions under the assumption of arbitrary correlations.Then a power-delay bi-objective optimization model is formulated by computation of cumulative distribution function(CDF) bounds.Finally,the AWS method is applied for power-delay optimization to generate a well-distributed set of Pareto-optimal solutions.Experimental results on ISCAS benchmark circuits show that the proposed bi-objective framework is capable of providing sufficient trade-off information between power and timing yield. With shrinking technology, the increase in variability of process, voltage, and temperature (PVT) parameters significantly impacts the yield analysis and optimization for chip designs. Previous yield estimation algorithms have been limited to predicting either timing or power yield. However, neglecting the correlation between power and delay will result in significant yield loss. Most of these approaches also suffer from high computational complexity and long runtime. We suggest a novel bi-objective optimization framework based on Chebyshev affine arithmetic (CAA) and the adaptive weighted sum (AWS) method. Both power and timing yield are set as objective functions in this framework. The two objectives are optimized simultaneously to maintain the correlation between them. The proposed method first predicts the guaranteed probability bounds for leakage and delay distributions under the assumption of arbitrary correlations. Then a power-delay bi-objective optimization model is for- mulated by computation of cumulative distribution function (CDF) bounds. Finally, the AWS method is applied for power-delay optimization to generate a well-distributed set of Pareto-optimal solutions. Experimental results on ISCAS benchmark circuits show that the proposed bi-objective framework is capable of providing sufficient trade-off information between power and timing yield.
出处 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第2期160-172,共13页 信息与电子工程前沿(英文版)
关键词 Parameter variations Parametric yield Multi-objective optimization Chebyshev affine Adaptive weighted sum Parameter variations, Parametric yield, Multi-objective optimization, Chebyshev affine, Adaptive weighted sum
  • 相关文献

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部