期刊文献+

基于遗传算法和人工神经网络的巷道支护研究 被引量:1

Study on roadway support based on genetic algorithm and artificial neural network
下载PDF
导出
摘要 针对软岩巷道围岩的复杂性和离散性特点,采用单一围岩稳定性影响因素无法进行巷道围岩准确分类,进而无法准确地确定支护设计方案的现状,采用遗传算法和人工神经网络建立了围岩稳定性分类预测模型。通过算例验证了该模型能在考虑多影响因素下准确地代表围岩稳定性影响因素与围岩类型之间的非线性关系,并预测出软岩巷道的围岩分类,从而为软岩巷道稳定性分类及控制技术提供参考依据。 Based on the complex soft rock surrounding rock condition, surrounding rock cannot be classified based on single surrounding rock stability influencing factor, genetic algorithm and artificial neural network model was established to overcome the above- mentioned disadvantage to predict the stability classification of surrounding rock. The example was used to demonstrate that the established model can represent the nonlinear relationship between stability influence factors and types for surrounding rock under considering multi- influence factors. Meanwhile, the proposed model classified surrounding rock, which can provide reference for soft rock stability classification and control of soft rock.
出处 《煤炭与化工》 CAS 2016年第1期1-4,共4页 Coal and Chemical Industry
基金 河南省科技攻关计划项目(152102310318) 河南省高等学校重点科研项目(16A410001) 2015年国家级大学生创新创业训练计划项目(201510479045) 安阳师范学院大学生创新基金项目(ASCX/2015-Z147)
关键词 遗传算法 神经网络 巷道支护 围岩稳定性 genetic algorithm artificial neural network roadwaysupport stabilityofsurroundingrock
  • 相关文献

参考文献16

二级参考文献90

共引文献1415

同被引文献13

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部