期刊文献+

低空无人机视频影像可量测立体模型构建技术 被引量:3

Measurable Stereo Model Generating Technology Based on LowAltitude UAV Video Images
下载PDF
导出
摘要 提出了一种利用无人机快速获取的视频数据的可量测立体模型构建方法。首先,通过无人机飞行平台快速获取视频数据,基于改进平板摄像机智能标定技术,获取摄像头的内方位元素,结合摄像机内方位参数、视频帧率、飞行高度、速度、影像分辨率等参数实现了基于实时视频流的关键帧影像自适应自动提取算法,并对提取关键帧影像进行畸变差改正;其次,通过对校正后的影像进行光束法空中三角测量加密处理,计算视频关键帧影像的外方位元素信息。最后,利用北京地区的试验数据进行了验证分析。结果表明利用能快速实现可量测立体模型构建,具有较高的量测精度,能有效的提高应急测绘条件下的灾情地理信息获取,为灾情评估和辅助决策提供依据。 This paper proposes a method for generating measurable stereo model based on unmanned aerial vehicle (UAV) video images.Firstly,inner orientation elements of the cameras are got based on the improved plate smart camera calibration technology. Combining the inner orientation elements, video frame rate, flight altitude, flight speed, and image resolution etc, the key frame images are adaptively extracted and the distortion is corrected from the real-time video streaming. Secondly, based on distortion correction key frame images, the calculation of the video key frames image information of exterior orientation elements is conducted. Finally, the test data of Beijing area is verified, and the results show that using the video key frames can quickly generate the Measurable Stereo Model, with high measurement accuracy, and can effectively increase the surveying and mapping capability for the geographical information of the disaster under the emergency condition, to provide the basis for the disaster evaluation and auxiliary decision-making.
出处 《海洋测绘》 CSCD 2016年第1期75-78,共4页 Hydrographic Surveying and Charting
基金 国家科技支撑计划(2011BAB01B04) 测绘地理信息公益性行业科研专项(201412007 201512027)
关键词 无人机 摄像头标定 关键帧影像 光束法平差 可量测立体模型构建 unmanned aerial vehicle (UAV) intelligent camera calibration bundle adjustment key frame image adaptive extraction measurable stereo model generation
  • 相关文献

参考文献11

二级参考文献30

  • 1冯文灏.立体视觉系统检校中引入制约条件的推演[J].武汉测绘科技大学学报,1994,19(2):95-100. 被引量:4
  • 2周国栋,胡延霖,于克振.基于GIS和GPS的某小型无人机监控及导航系统设计与实现[J].航空兵器,2006,13(2):13-16. 被引量:5
  • 3Candocia F M. Jointly Registering Images in Domain and Range by Piecewise Linear Comparametric Analysis[J]. IEEE Transaction on Image Processing, 2003, 12(4): 409-419.
  • 4Zhu Zhigang, Xu Guangyou, Edward M R. Fast Construction of Dynamic and Multi-resolution 360° Panoramas from VideoSequences[J]. Image and Vision Computing, 2006, 24(1): 13-26.
  • 5Steve H, Harpreet S S, Rakesh K. Automated Mosaics via Topology Inference[J]. IEEE Computer Graphics and Applications, 2002, 22(2): 44-54.
  • 6Kang E Y, Cohen 1, Medioni G. A Graph-based Global Registration for 2D Mosaics[C]//Proceedings of the 15th International Conference on Pattern Recognition. Barcelona, Spain: [s. n.], 2000: 257-260.
  • 7Gracias N, Jose S V. Underwater Video Mosaics as Visual Navigation Maps[J]. Computer Vision and Image Understanding, 2001,79(1): 66-97.
  • 8Hsu C T, Tsan Y C. Mosaics of Video Sequences with Moving Objects[J]. Signal Processing: Image Communication, 2004, 19(1): 81-98.
  • 9陈胜勇,刘盛,等.基于OpenCV的计算机视觉技术实现[M].北京:科学出版社2009:125-126.
  • 10Chen S Y,PR,1990年,23卷,8期,859页

共引文献145

同被引文献22

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部