期刊文献+

基于PCA-SVM的信息安全风险评估模型 被引量:1

Assessment model of information security risk based on PCA-SVM
下载PDF
导出
摘要 提出了一种基于主成分分析(PCA)和支持向量机(SVM)的信息安全风险评估模型。首先运用层次分析法构建信息安全风险评估指标体系并采用主成分分析法对风险影响因素进行降维;接着将主成分作为SVM学习样本的输入向量;并利用粒子群算法优化支持向量机的惩罚系数C和核宽度系统σ,建立了一种智能化的信息安全风险评估模型。仿真结果表明,PCASVM方法与标准SVM和BP神经网络相比,有较高的分类准确率,是一种优异的信息安全风险评估模型。 Assessment model of information security risk( ISRA) is established in this paper based on principal component analysis and support vector machine( PCA-SVM). First,ISRA index system is established by analytic hierarchy process( AHP). Then,new comprehensive indexes are generated by principle component analysis. Third,support vector machine is trained with principal component as the input vectors. Fourth,PSO algorithm is used to optimize the SVM's penalty factor C and kernel width coefficient σ. The simulation results suggested that, the proposed PSO-SVM method has higher classification accuracy than the BP neural network method,PSO-BP method and the standard SVM method.
作者 胡莲 王颖颖
出处 《信息技术》 2016年第2期99-102,共4页 Information Technology
基金 上海市教委科研创新项目(12YZ1710) 上海金融学院校级科研项目(SHFUKT13-07)
关键词 PCA SVM 信息安全 风险评估 principal component analysis support vector machine information security risk assessment
  • 相关文献

参考文献6

  • 1冯登国,张阳,张玉清.信息安全风险评估综述[J].通信学报,2004,25(7):10-18. 被引量:308
  • 2党德鹏,孟真.基于支持向量机的信息安全风险评估[J].华中科技大学学报(自然科学版),2010,38(3):46-49. 被引量:36
  • 3王祯学,周安民,方勇,等.信息系统安全风险评估与控制理论[M].北京:科学出版社,2011.6.
  • 4Vapnik V N.The Nature of Statistical Learning Theory[M].Springer,1995.
  • 5张学工,译.统计学习理论本质[M].北京:清华大学出版社,1999.
  • 6Kennedy J,Eberhart R C.Particle swarm optimization[C].Proc.IEEE International Conference on Neural Networks,1995,11:1942-1948.

二级参考文献15

  • 1冯登国,张阳,张玉清.信息安全风险评估综述[J].通信学报,2004,25(7):10-18. 被引量:308
  • 2李红莲,王春花,袁保宗,朱占辉.针对大规模训练集的支持向量机的学习策略[J].计算机学报,2004,27(5):715-719. 被引量:53
  • 3Li Zhifeng. Using support vector machines to enhance the performance of bayesian face recognition [J]. IEEE Transactions on Information Forensics and Security, 2007, 2(2) : 174-180.
  • 4Singh Y, Kaur A, Malhotra R. Application of support vector machine to predict fault prone classes[J]. ACM, SIGSOFT Software Engineering Notes, 2009, 34(1) : 1 -6.
  • 5Franc V, Lsakov P, Miiller K R. Stopping conditions for exact computation of leave-one out error in support vector machines[C]//ACM Proceedings of the 25th International Conference on Machine Learning. Helsinki: ACM, 2008: 328-335.
  • 6Dlamini M T, Eloff J H P, Eloff M M. Information security: the moving target[J]. Computers & Security, 2009, 28(1): 189 198.
  • 7United States General Accounting Office, Accounting and Information Management Division. Information Security Risk Assessment[Z]. Augest 1999.
  • 8National Institute of Standards and Technology. Special Publications 800-30, Risk Management Guide(DRAFT)[Z]. June 2001.
  • 9BUTLER S A, FISCHBECK P. Multi-Attribute Risk Assessment, Technical Report CMD-CS-01-169[R]. December 2001.
  • 10BUTLER S A. Security Attribute Evaluation Method: A Cost-Benefit Approach[Z]. Computer Science. Department, 2001.

共引文献336

同被引文献7

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部