期刊文献+

基于累积分布函数的统计降尺度模型校验方法适用性研究 被引量:2

Applied Research of Calibration Method for SDSM Model Based on Cumulative Distribution Function
下载PDF
导出
摘要 为更精确的为区域气候模拟和预估研究提供参考,开展了基于累积分布函数的统计降尺度模型校验,在传统统计降尺度模型的基础上,使用基于累积分布函数的校验方法校正了SDSM模型预估的A2和B2情景下中国265个站点1961~2099年逐日温度数据,校正后A2情景下,观测值和模拟值R2达到0.9999以上的比例占到85%,达到1的占6%;B2情景下,观测值和模拟值R2达到0.9999以上的比例占到87%,达到1的占19%;斜率值接近1的站点分别增加了57%和51%;截距接近0的站点分别增加了31%和16%。校正后的模型能更好地预估出未来逐年稳定通过0℃的日期,也即生长季开始的日期。 For more accurate regional climate prediction to provide the reference,Carried out statistical downscaling model validation based on the cumulative distribution functions( CDFs),on the basis of traditional statistical downscaling model,using the SDSM based on the cumulative distribution functions model calibration predicted the daily temperature at 265 sites under the A2 and B2 scenarios from 1961 to 2099 in China. The result showed that the proportion of observation and simulation value R2 was above 0.9999 accounted for 85% under A2 scenarios after correction,R2 was 1 accounted for 6%; the proportion of observation and simulation value R2 was above 0.9999 accounted for 87% under B2 scenarios after correction,R2 was 1 accounted for 19%;The sites of the slope value close to 1 increased by 57% and 51% respectively; The sites of the intercept is close to 0 increased by31% and 16% respectively. The model after correction could better predict steadily through the date of the 0 ℃ in future( the accurate date of the beginning of the growing season).
出处 《江西农业学报》 CAS 2016年第1期74-78,共5页 Acta Agriculturae Jiangxi
基金 陕西省教育厅项目"气候变暖对陕西省不同区域主要农作物种植结构影响及对策研究"(14JK1017) 安康学院高层次人才科研专项(2015AYQDZR04)
关键词 SDSM 累计分布函数 统计降尺度 校验方法 SDSM Cumulative distribution functions Statistic downscaling Calibration method
  • 相关文献

参考文献13

  • 1范丽军,符淙斌,陈德亮.统计降尺度法对华北地区未来区域气温变化情景的预估[J].大气科学,2007,31(5):887-897. 被引量:78
  • 2高红霞,汤剑平.我国未来温度变化的统计降尺度预估[J].南京大学学报(自然科学版),2010,46(6):631-642. 被引量:2
  • 3Diaz-Nieto J, Wilby R L. A comparison of statistical down- scaling and climate change factor methods: impacts on lowflows in the river thames, united kingdom [ J ]. Climate Change, 2005, 69: 245-268.
  • 4Fowler H J, Blenkinsop S, Tebaldi C. Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling [ J ]. International Journal of Climatology, 2007, 27 (12) : 1547-1578.
  • 5Richardson C W, Wright D A. WGEN: a model for generating daily weather variables. U. S[ M ]. Department of Agriculture, Agricultural Research Service, 1984: 83.
  • 6Zhang X C. Spatial downscaling of global climate model output for site-specific assessment of coproduction and soil erosion [ J ]. Agricltural and For Meteorology, 2005, 135 : 215- 229.
  • 7Zhang X C. A comparison of explicit and implicit spatial down- scaling of GCM output for soil erosion and crop production as- sessments[J]. Climate Change, 2007, 84(3): 337-363.
  • 8Schoof J T, Pryor S C, Robeson S M. Downscaling daily maxi- mum and minimum temperatures in the Midwestern USA: a hybrid empirical approach[ J ]. International Journal of Chma- tology, 2007, 27: 439-454.
  • 9Benestad R E. Tentative probabilistic temperature scenarios for northern Europe [ J ]. Dynamic Meteorology and Oceanography, 2004, 56(2) : 89-101.
  • 10Liu D L, Zuo H P. Statistical downscaling of daily climate variables for climate change impact assessment over New South Wales, Australia [ J ]. Climate change, 2012, 115 ( 3/ 4) : 629-666.

二级参考文献132

  • 1姜大膀,王会军,郎咸梅.SRES A2情景下中国气候未来变化的多模式集合预测结果[J].地球物理学报,2004,47(5):776-784. 被引量:110
  • 2范丽军,符淙斌,陈德亮.统计降尺度法对未来区域气候变化情景预估的研究进展[J].地球科学进展,2005,20(3):320-329. 被引量:168
  • 3黄安宁,张耀存.BATS1e陆面模式对p-σ九层区域气候模式性能的影响[J].大气科学,2007,31(1):155-166. 被引量:14
  • 4Ceo R,Stern R D.Fitting models to daily rainfall data [J].Journal of Applied Meteorology,1982,21(7):1 024-1 031.
  • 5Chandler R E.On the use of generalized linear models for interpreting climate variability [J].Environmetrics,2005,16(7):699-715.
  • 6Yan Z W,Bate S,Chandler R E,et al.An analysis of daily maximum wind speed in northwestern Europe using generalized linear models [J].Journal of Climate,2002,15(15):2 073-2 088..
  • 7Zheng X G,Katz R W.Mixture model of generalized chain-dependent processes and its application to simulation of interannual variability of daily rainfall [J].Journal of Hydrology,2008,349(1/2):191-199.
  • 8Fealy R,Sweeney J.Statistical downscaling of precipitation for a selection of sites in Ireland employing a generalised linear modelling approach [J].International Journal of Climatology,2007,27(15):2 083-2 094.
  • 9Buishand T A,Shabalova M V,Brandsma T.On the choice of the temporal aggregation level for statistical downscaling of precipitation [J].Journal of Climate,2004,17(9):1 816-1 827.
  • 10Northrop P.A clustered spatial-temporal model of rainfall [J].Proceedings of the Royal Society A,1998,454(1 975):1 875-1 888..

共引文献134

同被引文献30

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部