期刊文献+

基于马尔可夫随机场的运动物体检测方法 被引量:1

Detection method based on Markov random field for moving object
下载PDF
导出
摘要 智能监控的实现是避免和防范变电站内各种潜在危险的一种有效途径.为了更准确判定变电站工作人员的运动状态,提出一种基于高斯混合模型结合马尔可夫随机场的运动物体检测方法.在图像的HSV颜色空间通过混合高斯背景建模实现对运动物体的初步检测,采用区域性马尔可夫随机场与运动物体模板匹配实现运动物体的精确检测,并根据模板去除存在的阴影.结果表明,该方法可在变电站不同背景条件下有效检测出运动物体,为运动物体的行为分析及运动场景拼接奠定了良好的基础. Implementation of smart surveillance is an effective way to avoid potential hazard within substation. In order to more accurately determine the state of substation staff,which was a motion object in this case,a novel detection method based on Gauss mixture model and Markov random field motion was proposed. First of all,the hue,saturation,value( HSV) color space of the images were preliminarily extracted by Gauss mixture background modeling. Then a segmentation approach based on Markov random field motion was applied to re-extract the HSV image,which was followed by shadow elimination referring to respective motion templates. Experimental results comfirmed that the proposed method was capable of precisely detecting the state of moving objects within substation in different background,which laid a sound foundation for behavior analysis of motion object and image stitching.
出处 《福建农林大学学报(自然科学版)》 CSCD 北大核心 2016年第1期116-120,共5页 Journal of Fujian Agriculture and Forestry University:Natural Science Edition
基金 国家自然科学基金资助项目(41401458) 福建省自然科学基金资助项目(2014J05045)
关键词 视频图像 高斯混合模型 运动检测 马尔可夫随机场 video image Gauss mixture model motion detection Markov random field
  • 相关文献

参考文献6

二级参考文献79

  • 1田广,戚飞虎,朱文佳,毛欣,陈磐君.单目移动拍摄下基于人体部位的行人检测[J].系统仿真学报,2006,18(10):2906-2910. 被引量:10
  • 2Friedman N, Russell S. Image segmentation in video sequences: a probabilistic approach. In: Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence. Providence, USA: Morgan Kaufmann, 1997. 175-181
  • 3Stauffer C, Grimson W E L. Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern AnaJysis and Machine Intelligence, 2000, 22(8): 747-757
  • 4Kaewtrakulpong P, Bowden R. An improved adaptive back- ground mixture model for real-time tracking with shadow detection. In: Proceedings of the 2nd European Workshop on Advanced Video Based Surveillance Systems. Providence, USA: Kluwer Academic Publishers, 2001. 1-5
  • 5Zivkovic Z, van der Heijden F. Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters, 2006, 27(7): 773-780
  • 6Lee D S. Effective Gaussian mixture learning for video background subtraction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 827-832
  • 7Power P W, Schoonees J A. Understanding background mixture models for foreground segmentation. In: Proceedings of Image and Vision Computing New Zealand. Auckland, New Zealand: Auckland University Press, 2002. 267-271
  • 8Elgammal A, Duraiswami R, Haxwood D, Davis L S. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of IEEE, 2002, 90(7): 1151-1163
  • 9Stenger B, Ramesh V, Paragios N, Coetzee F, Buhmann J M. Topology free hidden Markov models: application to background modeling. In: Proceedings of the 8th International Conference on Computer Vision. Vancouver, Canada: IEEE, 2001. 294-301
  • 10Toyama K, Krumm J, Brumitt B, Meyers B. Wallflower: principles and practice of background maintenance. In: Proceedings of the 7th International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999. 255-261

共引文献172

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部