期刊文献+

资料匮乏地区径流降尺度模型构建及预测 被引量:2

The Implication of Stream Flow Downscaling Method in Ungauged Regions and Scenario Prospective
下载PDF
导出
摘要 基于贝叶斯神经网络 ,构建了资料匮乏地区的径流降尺度模型 ,模拟了叶尔羌河卡群站月平均径流 ,与BP神经网络的结果进行了对比 ,验证了BNN的优越性 ,并结合CMIP5三种气候模式GFDL_ESM2G ,GFDL_ESM2M 及MIROC5的RCP 4 .5 ,RCP 6 .0 ,RCP 8 .5三种情景 ,对未来3个时段(2020年代 ,2050年代 ,2080年代)卡群站月平均径流进行了预测 ,并定量计算了预测的不确定性区间 ,研究表明 :贝叶斯神经网络降尺度模型可以较好地捕捉叶尔羌河的径流特征 ,即相关系数达到0 .9以上 ,效率系数达到0 .8 ,且模拟效果比ANN较优;未来情景下 ,叶尔羌河流域受气温升高影响 ,3个时段年径流均呈现增加的趋势 ,增加幅度分别为75% ~92% ,83% ~110% ,88% ~127% ,其中RC P8 .5情景下的径流增加幅度比其他情景较明显 ;不同月份径流存在不同程度的增加趋势 ,其中5 -8月份变化趋势相对较明显. Based on the newly presented stream flow downscaling method on the basic of Bayesian Neural Networks (BNNs) ,month-ly stream flow of Yarkant River was simulated and proved to be outperforming the results from conventional BP artificial neural net-works (ANNs) .The future monthly stream flows (2020s ,2050s ,2080s) in response to climate change on Kaqun hydro-station ,as well as the uncertainty interval ,were projected with consideration of three emission scenarios (RCP4 .5 ,RCP6 .0 ,RCP8 .5) provid-ed by three different global climate models (GFDL_ESM2G ,GFDL_ESM2M ,MIROC5) .Results indicate that the stream flow downscaling method has better performance in capturing the inner-annual and inter-annual stream flow changes ,with the correlation coefficient over 0 .9 and the efficiency coefficient reaching 0 .8 .Affected by rising temperature ,the monthly stream flow in Kaqun Station are expected to increase under all the future scenarios .,especially in RCP8 .5 ,and May-Aug monthly stream flow shows greater upward trend than Sep-Apr monthly stream flow .
出处 《中国农村水利水电》 北大核心 2016年第1期12-15,20,共5页 China Rural Water and Hydropower
基金 国家自然科学基金面上项目(41371051)
关键词 径流降尺度 贝叶斯神经网络 径流预测 叶尔羌河 stream flow downscaling Bayesian Neural Networks stream flow projection Yarkant River
  • 相关文献

参考文献7

  • 1Cannon A J ,Whitfield P H. Downscaling recent streamflow condi-tions in British Columbia Canada using ensemble neural network models rJ~. Journal of Hydrology,2002,259 (1-4):136 151.
  • 2Ghosh S, Mujumdar P P. Statistical downsealing of GCM simula- tions to streamflow using relevance vector machine EJ~. Advances in Water Resources,2008,31(1):132 146.
  • 3Kingston G Bet al. Bayesian training of artificial neural networks used for water resources modeling ~J]. Water Resources Re- search, 2005,41 (12).
  • 4Xuesong Zhang, Faming Liang et al. Estimating uncertainty of streamflow simulation using Bayesian neural networks EJ~. Wa ter Resources Research, 2009,45.
  • 5胡江林,张礼平,宇如聪.神经网络模型预报湖北汛期降水量的应用研究[J].气象学报,2001,59(6):776-783. 被引量:34
  • 6Liang F. Bayesian neural networks for non-linear time series forecastingEJ~. Statistics and Computing,2005,15:13 29.
  • 7张贤芳,舒强,李偲.叶尔羌河近48年来径流演变规律研究[J].干旱区资源与环境,2012,26(1):93-97. 被引量:23

二级参考文献23

共引文献55

同被引文献34

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部