期刊文献+

超级λ′定向图的最小度条件

Minimum Degree Conditions for Oriented Graphs to be Super-λ′
下载PDF
导出
摘要 图的限制弧连通度是度量网络可靠性的一个重要指标.设D是一个强连通有向图,其弧割S是一个限制弧割,若D-S包含一个非平凡的强连通分支D′,使得D-V(D′)包含至少一条弧.限制弧连通度λ′(D)是指最小限制弧割的弧数.一个强连通有向图是超级λ′的,若它的限制弧连通度是极大的且最小限制弧割的数目是极小的.定向图和二部定向图是超级λ′的最小度条件被给出,并用例子说明所给的条件是紧的. The restricted arc connectivity of a digraph is an important measurement for reliability of a network. Let D be a digraph. An arc cut S is a restricted arc cut of D if D-S has a non-trivial strong component D′ such that D-V(D′) contains an arc. The restricted arc connectivity λ′(D) is the minimum cardinality over all restricted arc cuts. A strong digraph is super- λ′ if its restricted arc connectivity is maximal and the number of its minimumrestricted arc cuts is minimal. In this paper,we present some minimum degree conditions for(bipartition)orientedgraphs to be super-λ′ and give examples to show that our conditions are sharp.
作者 林上为 丁丹
出处 《河南科学》 2016年第2期157-160,共4页 Henan Science
基金 国家自然科学基金(61202017) 中国博士后基金(2012M510579)
关键词 网络 有向图 限制弧连通度 最小度 networks digraph restricted arc connectivity minimum degree
  • 相关文献

参考文献1

二级参考文献29

  • 1Geller, D., Harary, F.: Connectivity in digraphs, Lecture Notes in Math., 186, 1970, 105-114.
  • 2Hamidoune, Y. O.: A property of α-fragments of a digraph. Discrete Math., 31, 105- 106 (1980).
  • 3Hamidoune, Y. O.: Sur les atomes d'un graphe oriente, abeliens. Discrete Math., 55, 323-326 (1985).
  • 4Ou, J. P., Zhang, F. J.: Super restricted edge connectivity of Kautz graphs. Acta Mathematica Sinica, Chinese Series, 47(5), 931-940 (2004).
  • 5Shiu, W. C., Liu, G. Z.: k-factors in regular graphs. Acta Mathematica Sinica, English Series, 24(7), 1213-1220 (2008).
  • 6Wang, C. Q., Chen, T. S.: Semisymmetric cubic graphs as regular covers of K3,3. Acta Mathematica Sinica, English Series, 24(3), 405-416 (2008).
  • 7Xu, B. G., Lu, X. X.: A structural theorem on embedded graphs and its aplication to colorings. Acta Mathematica Sinica, English Series, 25(1), 47-50 (2009).
  • 8Fabrega, J., Fiol, M. A.: Extraconnectivity of graphs with large girth. Discrete Math., 127, 163-170 (1994).
  • 9Fabrega, J., Fiol, M. A.: On the extraconnectivity of graphs. Discrete Math., 155, 49-57 (1996).
  • 10Balbuena, C., Carmona, A., Fabrega, J., Fiol, M. A.: Extraconnectivity of graphs with large minimum degree and girth. Discrete Math., 167/168, 85-100 (1997).

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部