摘要
给出求解一类时间分数阶延迟扩散微分方程的数值解法,方程中对时间的一阶导数利用分数阶α(0<α<1)阶导数代替,构造了求解该微分方程的差分格式,并对收敛性和稳定性进行证明,数值算例检验该格式解决此类方程是有效的.
A numerical method is presented to solve one time fractional delay diffusion differential equation. Thefirst-order time derivative is replaced by Caputo fractional derivative,and the paper gives a difference schemewhich is proved the difference schemes are stable and convergence. Numerical example shows that the numericalmethod is a practical method.
出处
《河南科学》
2016年第2期171-174,共4页
Henan Science
基金
国家自然科学基金资助项目(11271101)
山东省高校科技计划项目(J15LI57)
关键词
时间分数阶
延迟扩散微分方程
无条件收敛
无条件稳定
time fractional
delay diffusion differential equation
unconditional convergence
unconditional stable