期刊文献+

基于相对距离分布聚类的人脸特征点定位算法 被引量:2

An Algorithm of Locating the Feature Points of Human Face Landmarks Based on Relative Distance Distribution
下载PDF
导出
摘要 针对目前主流算法对所有特征点采用整体回归而忽略人脸局部结构信息的问题,提出了一种新的回归流程结构,通过基于特征点相对距离分布直方图和K均值聚类,结合了人脸结构信息对特征点聚类并分别进行回归,可以更准确地进行人脸特征点定位。另外,通过对回归迭代方法进行优化,可以实现鲁棒的参数更新,大大提高运算速度。在有遮挡标识的人脸数据库(COFW)上进行了深入的实验,结果表明:论文算法对于人脸特征点定位效果显著,相较于鲁棒姿势级联回归(RCPR)等算法训练时间大幅减少,其定位准确度也有了一定提高,而且算法计算效率高,测试速度则达到220fps,能够满足实时处理的要求。 In the light of the problems that at present in the main stream algorithms the integral regression method is still applied to all the feature points whereas the local structure information of human face is ig- nored, a novel cascaded regression structure is presented based on relative distance distribution and K- means clustering combined with face structure information on clustering facial landmarks and performing regression for each part respectively, the feature points locating of human face can be performed more accurately. In addition, the regression method is optimized to make robust parameter updated with efficien- cy. The paper carries out a thorough experiment on a face database (COFW) with block identification. The experiments demonstrate that the algorithm is notable in effect with regard to the application of feature points of a human face to the location, and the algorithm is greatly short in training time compared with Robust Cascaded Pose Regression and other state-of-the-art methods and the testing speed is up to 220 fps, thus realizing real-time processing.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2016年第1期77-82,共6页 Journal of Air Force Engineering University(Natural Science Edition)
基金 国家自然科学基金(61379104 61372107)
关键词 特征点定位 人脸结构 相对距离分布 K均值聚类 鲁棒姿势级联回归 feature points locating structure of human face relative distance distribution K-means Ro- bust Cascaded Pose Regression (RCPR)
  • 相关文献

参考文献18

  • 1Olugbenga Ayinde, Yee-Hong Yang. Face Recognition Ap- proach Based on Rank Correlation of Gabor filtered Images[J]. Pattern Recognition, 2002,35(6) : 1275-1289.
  • 2C Chen, Q Hou, K Zhou. Displaced Dynamic Expression Re- gression for Real-time Facial Tracking and Animation [J]. ACM Transactions on Graphics(TOG), 2014,3:3(4)=43.
  • 3A Martinez, S Du. A Model of the Perception of Facial Ex pressions of Emotion by Humans: Research Overview and Perspectives[J]. The Journal of Machine Learning Research, 2012,13(1): 1589-1608.
  • 4D Cristinacce, T F Cootes. Feature Detection and Tracking with Constrained Local Models[C]// British Machine Vision Conference. London: 2006, 1(2): 929-938.
  • 5I Matthews, S Baker. Active Appearance Models Revisited[J]. International Journal of Computer Vision, 2004,60(2): 135-164.
  • 6C T P Sauer, T Cootes. Accurate Regression Procedures {or Active Appearance Models[C]//British Machine Vision Conference (BMVC). Dundee, Scotland, 2011,1(6):681-685.
  • 7J Saragih,R Goecke. A Nonlinear Discriminative Approach to AAM Fitting[C]//IEEE 11th International Conference on Computer Vision (ICCV).Rio de Janeiro, Brazil, 2007 : 1-8.
  • 8A Asthana, J Asragih, M Wagner, et al. Evaluating AAM Fitting Methods for Facial Expression Recognition[C]//Affeetive Computing and Intelligent Interaction and Workshops (ACII). Amsterdam, Holland, 2009,1-8.
  • 9G Tzimiropoulos, J Alabort-i-medina,S Zafeiriou, et al. Ge neric Active Appearance Models Revisited [C]//Computer Vision-ACCV.Berlin Heidelbeng: Springer,2013 : 650-663.
  • 10N Dully, D P Helmbold. Boosting Methods for Regression [J]. Machine Learning, 2002, 47(2-3):153-200.

同被引文献10

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部