期刊文献+

基于Bayesian方法的参数估计和异常值检测 被引量:6

Parameter estimation and outliers detection based on Bayesian method
下载PDF
导出
摘要 异常值检测是当前数据分析研究中的一个重要研究领域。模型中的异常值会直接影响建模、参数的估计、预测等问题。基于模型的异常值检测,传统的做法是先对模型参数进行估计,再进行异常值检测。而异常值的存在会影响参数估计,从而导致下一步异常值检测的不可靠;反之异常值检测也会影响参数估计。针对这些不足之处,提出了基于Bayesian方法的参数估计和异常值检测,此方法可以将参数估计和异常值检测同时实现,具体做法是在线性回归模型中引入识别变量,基于Gibbs抽样算法,给出识别变量后验概率的计算方法,通过比较这些识别变量的后验概率进行异常值定位,同时给出参数的估算方法。通过大量的模拟实验,结果表明,与传统方法相比,提出的方法对异常值更灵敏。 Outliers detection is an important research field in the current data analysis. Outliers in the data will affect the modeling,estimating parameters,forecasting and other issues directly. The conventional methods of outliers detection based on the model are to estimate the model parameters firstly,and then detect the abnormal value. The presence of outliers affects the parameter estimation,which results the in unreliability of outlier detection consequently; On the contrary,the presence of outliers will affect the parameter estimation. In this paper,we propose a new outliers detecting method based on Bayesian method,which can estimate parameters and detect outliers simultaneously. This method is introducing classification variables into linear regression model. Using Gibbs sampling a procedure for computing the posterior probabilities of classification variables and obtaining the estimation of parameters is designed. The outliers can be detected by comparing the posterior probabilities of these classification variables. A large number of simulation experiments illustrate that the proposed method is more sensitive to outliers compared with traditional methods.
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2016年第1期138-142,共5页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家自然科学基金(11426159) 首都经济贸易大学研究生科技创新项目(12013120061)~~
关键词 线性回归 识别变量 参数估计 异常值 Bayesian方法 GIBBS抽样 linear regression classification variables parameter estimation outlier Bayesian method Gibbs sampling
  • 相关文献

参考文献11

  • 1HA_:L F K, HONCHEITI K M, ROUSSEEUW P J,et aJ. The Approach based on Influence Functions. [ M ]New York : John Wiley and Sons, 1986.
  • 2HUBERT M, KOUSSEEUW P, VAN A S. Migh-break-clown robust multivariate methods[ J ]. Statistical science,2008,23 (1),92-119.
  • 3MCCANN L, WKLSCH R E. H(?bust Variable SelectionUsing Iast Angle Regression and Elemental Set Sampling[J ]. Computational Statistics & Data Analysis,2007,52(1 ) ’249-257.
  • 4KOUSSEELW P J, VAN I〕K. Computing LTS regressionfor large data sets [J]. Dala Mining and Knowledge Dis-covery ,2006, (12) ,29-45.
  • 5HUBKR P j. Robust Statistics[ M ]. New York:Wiley, 1981.
  • 6DAVIKS P L. Asymptotic behavior of S-estirnates of mult-ivariate location parameters and dispersion matrices [ J ].Ann, Statist, 1987,(15) ,1269-1292.
  • 7MARONNA K A,MARTIN 1) K, YOHAJ V J. RobustStatislicis: Theory anti Methods,Chichester [ M ] : NewYork:Wiley, 2006.
  • 8SHK Y, OWEN A H. Outlier detection using non(‘onverpenalized regression [ J ]. Journal of the American Statisti-cal Association, 2011,106(494) ,626-639.
  • 9BERGKR J 0. Statistical decision theory and Bayesian a-naiysis[ M ]. New York: Wiley, 1985.
  • 10吴喜之.现代贝叶斯统计学[M].北京:中国统计出版社,2000.

共引文献24

同被引文献62

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部