期刊文献+

基于MATLAB的某火炮膛压的曲线拟合分析 被引量:4

Curve Fitting Analysis for Gun Chamber Pressure by MATLAB
下载PDF
导出
摘要 在火炮反面问题计算中,膛内时期平均压力p和时间t为表格函数。为了得到任意时间的炮膛合力以便求解二阶运动微分方程,传统方法采用手工描点、插值法等,误差相对较大,精度低。以某型号火炮pt表格函数为例,基于MATLAB软件,采用最小二乘法进行数值计算,得到任意时间的炮膛压力;同时找到拟合误差最小时的多项式次数n,为火炮反面问题计算和分析提供了依据和参考。 In the inverse question calculation of a gun,the functional relation between average chamber pressure and time is discrete.In order to achieve gun chamber's resultant force for solving second-order kinematic differential equation,plotting points by hand and interpolation method are used in the past,which have the bigger error and poor accuracy.Take a gun's pressure-time tabular function for example,the paper uses least square method to achieve the chamber pressure of a gun at any time by MATLAB and seeks out the fittest degree of polynomial with the least error.In the end,qualitative conclusions of reducing error are proposed,which provide the basis and reference for the gun's inverse question.
出处 《机械工程与自动化》 2016年第1期66-67,70,共3页 Mechanical Engineering & Automation
关键词 火炮膛压 曲线拟合 MATLAB gun chamber pressure curve fitting MATLAB
  • 相关文献

参考文献3

二级参考文献14

  • 1徐传胜,吕建荣.亚伯拉罕·棣莫弗的概率思想与正态概率曲线[J].西北大学学报(自然科学版),2006,36(2):339-343. 被引量:14
  • 2LANCASTER H O.Encyclopedia of statistical science[J].New York:Wiley,1988.
  • 3HACKING I.The Taming of Chance[M].Cambridge:Cambridge University Press,1990.
  • 4COHEN I B.Revolution in Science[M].Cambridge:The Belknap Press of Harvard University Press,1985.
  • 5PLACKETT R L.The Discovery of the method of Least Squares[J].Biometrika,1972,(59):239-251.
  • 6STIGLER S M.The History of Statistics[M].Cambridge:Harvard University Press,1986:94-96.
  • 7TODHUNTER I.A History of the Mathematical of theory of probability from the times of pascal to that of Laplace[M].New York:Chelsea,1965:482-517.
  • 8SHEYNIN O B.GAUSS C F and the theory of Error[J].Archive for History of Exact Science,1979,(20):21-72.
  • 9WATERHOUSE W C.Gauss's first argument for least squares[J].Archive for history of Exact Science 1991,(41):41-52.
  • 10VICTOR J K.数学史通论[M].李文林,译.北京:高等教育出版社,2004:586-588.

共引文献186

同被引文献21

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部