期刊文献+

地基激光辐照近地轨道小尺度空间碎片作用规律研究 被引量:9

Research on action rules of ground-based laser irradiating small scale space debris in LEO
下载PDF
导出
摘要 通过研究脉冲激光与铝靶碎片的膨胀运动以及冲量耦合的相互作用,仿真分析了铝靶碎片在等离子体作用下的速度和压力时空分布规律以及冲量耦合系数与激光功率密度之间的定量关系;在此基础上,建立了基于地基的脉冲激光辐照近地轨道小尺度空间碎片动力学变轨仿真模型,模拟研究了近地轨道小尺度空间碎片移除过程中轨道偏心率与近地点高度随激光脉冲数目变化的影响规律。结果表明:在最优冲量耦合系数作用下,当脉冲数目达到180次轨道偏心率为0.071时,基于此文的条件可实现近地轨道小尺度空间碎片的有效移除。预期成果可为高能激光移除近地空间碎片技术的应用提供技术指导。 The effect of expansion moving and impulse coupling in pulse laser and aluminum target debris were investigated, the spatial and temporal distribution rules of velocity and pressure in aluminum target debris and plasma were analyzed by numerical simulation, and the quantitative relation of impulse coupling coefficient and laser power densities was also discussed. Further, a dynamic deorbit model of ground-based pulse laser irradiating small scale space debris in low earth orbit (LEO) was established, and the effects of orbital eccentricity and perigee altitude with different number of pulses were simulated in the process of removing small scale space debris in LEO. The results indicate that the small scale space debris in LEO could be deorbited availably by optimal impulse coupling coefficient when the number of pulses was 180 times, orbital eccentricity was 0.071 based on the condition of this paper. The prospective achievements can provide technical guidance for the application of high power laser removing space debris in LEO.
出处 《红外与激光工程》 EI CSCD 北大核心 2016年第2期7-12,共6页 Infrared and Laser Engineering
基金 陕西省科技计划项目(2013K07-17) 国家自然科学基金(61205002 61471387)
关键词 地基激光 近地轨道 小尺度空间碎片 变轨模型 ground-based laser low earth orbit small scale space debris deorbit model
  • 相关文献

参考文献8

二级参考文献38

  • 1郑志远,鲁欣,张杰,郝作强,远晓辉,王兆华.激光等离子体动量转换效率的实验研究[J].物理学报,2005,54(1):192-196. 被引量:12
  • 2石海霞,谭荣清,郑义军.大气中激光烧蚀铝靶冲量耦合系数实验研究[J].中国激光,2007,34(6):804-808. 被引量:3
  • 3[3]KANTROWITZ, A. Propulsion to orbit by ground-based lasers[J]. Aeronautics and Astronautics , 1972, 10:74-76.
  • 4[4]YABE T, PHIPPS C, AOKI K, et al . Laser driven vehicle[J].SPIE , 2002, 4760:867-878.
  • 5[5]TOYODA K. Continuous wave laser thruster experiment[J]. Vacuum, 2000, 59:63-72.
  • 6[6]SASOH A. Laser-driven in-tube accelerator[J].Review of Scientific Instruments . 2001, 72:1893-1898.
  • 7[7]PHIPPS C R, LUKE J R. Diode laser-driven microthrusters: A new departure for micropropulsion[J].AIAA . 2002, 40(1):1-9.
  • 8[8]MASNAVI M, KIKUCHI T, NAKAJIMA M, et al . Influence of opacity on gain coefficients in static and fast moving neon-like krypton plasma[J].J. Appl. Phys. ,2002, 92(7):3480-3486.
  • 9Nicholas L Johnson. Orbital Debris: the Growing Threat to Space Operations[ R]. Florida: Johnson Space Cen- ter, AAS-10-011, 2010.
  • 10BONN K A. Active Removal of Space Debris-Discussing Technical and Economical Issues [ R ]. Florida: Johnson Space Center, IAC-06-B6.4.04, 2006.

共引文献101

同被引文献48

引证文献9

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部