期刊文献+

日心悬浮轨道航天器编队飞行控制 被引量:5

Control of Spacecraft Formation Flying around Heliocentric Displaced Orbits
原文传递
导出
摘要 针对日心悬浮轨道航天器编队飞行控制问题,应用线性自抗扰控制(LADRC)技术设计了编队飞行控制器.首先,考虑外部扰动,基于圆形限制性三体问题(CRTBP)模型推导了航天器编队日心悬浮轨道非线性动力学方程.其次,提出了一种基于扰动估计和补偿的编队飞行控制方法,避免了通过航天器局部线性化动力学方程或精确非线性动力学方程设计编队飞行控制器时存在的模型精确性过度依赖等缺陷.最后,数值仿真表明存在系统模型不确定性、初始入轨误差及地球轨道偏心率扰动的情况下,所设计的控制器实现了高精度的编队飞行控制,并优于NASA制定的5 mm编队飞行精度标准. We investigate the control of spacecraft formation flying around heliocentric displaced orbits,and propose a control method based on linear active disturbance rejection control( LADRC). First,we derive a nonlinear dynamic model of the spacecraft formation based on the circular restricted three-body problem( CRTBP) model,considering external disturbance. Then,we present a spacecraft formation flying control method based on the estimation of and compensation for disturbance. This control method avoids the problem of excessive dependency on model accuracy,which occurs when controllers are designed according to a locally linearized model or an accurate nonlinear model. Finally,our numerical simulation results show that the proposed method achieves high control accuracy in the presence of system uncertainties,initial injection errors,and perturbations due to the eccentric nature of the Earth's orbit. Furthermore,the precision of the formation control is within 5 millimeters,and satisfies NASA's high accuracy requirement.
出处 《信息与控制》 CSCD 北大核心 2016年第1期114-119,128,共7页 Information and Control
关键词 日心悬浮轨道 航天器编队飞行 线性自抗扰控制 heliocentric displaced orbit spacecraft formation flying linear active disturbance rejection control(LADRC)
  • 相关文献

参考文献19

  • 1Gurfil P,Idan M,Kasdin N J.Adaptive neural control of deep-space formation flying[J].Journal of Guidance,Control,and Dynamics,2003,26(3):491-501.
  • 2McKay R,Macdonald M,Biggs J,et al.Survey of highly non-Keplerian orbits with low-thrust propulsion[J].Journal of Guidance,Control,and Dynamics,2011,34(3):645-666.
  • 3Beichman C.Terrestrial planets finder[J].Bulletin of the American Astronomical Society,1999,31(4):1119.
  • 4Peng H J,Zhao J,Wu Z G,et al.Optimal periodic controller for formation flying on libration point orbits[J].Acta Astronautica,2011,69(7):537-550.
  • 5Kulkarni J E,Campbell M E,Dullerud G E.Stabilization of spacecraft flight in halo orbits:An H∞approach[J].IEEE Transactions on Control Systems Technology,2006,14(3):572-578.
  • 6张辉,朱敏,周建亮,王永.姿态角幅值约束下的太阳帆Lissajous轨道保持控制[J].空间科学学报,2014,34(6):872-880. 被引量:2
  • 7Rahmani A,Jalali M A,Pourtakdoust S H.Optimal approach to halo orbit control[C]//AIAA Guidance,Navigation,and Control Conference and Exhibit.Los Angeles,CA,USA:AIAA,2003:11-14.
  • 8Gong S P,Baoyin H X,Li J F.Solar sail formation flying around displaced solar orbits[J].Journal of Guidance,Control,and Dynamics,2007,30(4):1148-1152.
  • 9Gong S P,Baoyin H X,Li J F.Relative orbit design and control of formation around displaced solar orbits[J].Aerospace Science and Technology,2008,12(2):195-201.
  • 10McInnes C R.Passive control of displaced solar sail orbits[J].Journal of Guidance,Control,and Dynamics,1998,21(6):975-982.

二级参考文献61

共引文献1099

同被引文献41

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部