摘要
为了提高网络流量预测精度,根据深度学习理论提出一种基于深度信念网络(DBN)的网络流量预测模型。该预测模型由受限玻尔兹曼机(RBM)单元组成,采用逐层无监督贪心算法训练参数,然后利用反向传播学习算法微调整个网络参数。最后基于该预测模型对收集到的真实网络流量进行预测和分析,并与传统神经网络预测进行对比研究,结果表明,该预测模型克服了传统神经网络容易陷入局部最优、训练时间长及函数拟合度不高等缺点,具有更高的预测精度。
The prediction of network traffic flow is the foundation of network performance and service quality; it plays an important role in network layout and management. To improve the network traffic prediction accuracy, a nonlinear network traffic prediction model based on Deep Belief Network (DBN) is proposed. The model consists of Restricted Bohzmann Machine (RBM) unit which optimizes the layer-by-layer parameters by unsupervised greedy algorithm, and then optimizes all parameters by Back-Propagation algorithm. Simulation results on real network traffic show that the proposed prediction model is more efficient, and has better precision compared with the traditional neural network model.
出处
《山西电子技术》
2016年第1期62-64,76,共4页
Shanxi Electronic Technology
基金
国家自然科学基金资助项目(61379125)
关键词
网络流量
深度学习
深度信念网络
受限玻尔兹曼机
神经网络
预测
Network traffi
deep learning
deep Belief Network (DBN)
Restricted Bohzmann Machine (RBM)
neural network
forecasting