期刊文献+

On the Transitivity of the Strong Product of Graphs 被引量:2

关于图的强乘积的可迁性的研究(英文)
下载PDF
导出
摘要 Since many large graphs are composed from some existing smaller graphs by using graph operations, say, the Cartesian product, the Lexicographic product and the Strong product. Many properties of such large graphs are closely related to those of the corresponding smaller ones. In this short note, we give some properties of the Strong product of vertex-transitive graphs. In particular, we show that the Strong product of Cayley graphs is still a Cayley graph.
机构地区 College of Computer
出处 《Chinese Quarterly Journal of Mathematics》 2015年第4期620-623,共4页 数学季刊(英文版)
基金 Supported by the National Natural Science Foundation of China(61164005,11161037,11101232,61440005,11461054) Supported by the Program for Changjiang Scholars and Innovative Research Team in Universities(IRT1068) Supported by the Research Fund for the Chunhui Program of Ministry of Education of China(Z2014022) Supported by the Nature Science Foundation from Qinghai Province(2014-ZJ-721,2014-ZJ-907,2015-ZJ-905)
关键词 Cayley graph strong product vertex-transitive graph Cayley graph strong product vertex-transitive graph
  • 相关文献

参考文献10

  • 1BROERE I, HATTINGH J H. Products of circulant graphs[J]. Quaest Math, 1990, 13: 191-216.
  • 2SHELDON B, AKERS B K. A group-theoretic model for symmetric innterconnection networks[J]. IEEE Trans Computers, 1989,38(4): 555-566.
  • 3ALSPACH B, PARSONS T D. A construction for vertex-transitive graphs[J]. Canad J Math, 1982, 34: 307-318.
  • 4POTOCNIK P, SAJNA M, VERRET G. Mobility of vertex-transitive graphs[J]. Discrete Math, 2007, 307: 579-591.
  • 5LAROSE B, LAVIOLETTE F, TARDIF C. On normal Cayley graphs and hom-idempotent graphs[J]. European J Combin, 1998, 19: 867-881.
  • 6LI Feng, WANG Wei, XU Zong-ben, et al. Some results on the lexicographic product of vertex-transitive graphs[J]. Applied Mathematics Letters, 2011, 24: 1924-1926.
  • 7NEDELA R, SKOVIERA M. Which generalized Petersen graphs are Cayley graphs?[J]. J Graph Theory, 1995, 19: 1-11.
  • 8XU Jun-ming. The Theory of Interconnection Networks[M]. Beijing/China: Academic Publishers(in Chinese), 2007: 44-82.
  • 9SANDERS R S, GEORGE J C. Results concerning the automorphism group of the tensor product GI8iKn[J], JCMCC, 1997, 24: 119-127.
  • 10BONDY J A, MURTY U S R. Graph Theory with Application[M]. Amsterdam: North-Holland, 1976: 1-75.

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部