期刊文献+

基于改进的子空间追踪算法的人脸识别 被引量:2

Face recognition based on improved subspace pursuit
下载PDF
导出
摘要 基于稀疏表示的人脸识别中的子空间追踪(SP)算法的候选原子个数固定与稀疏度相同,因此需要已知信号的稀疏度。针对该缺点,提出一种改进的子空间追踪算法,在选择原子的过程中引入回溯迭代优化思想,候选原子个数随着迭代次数逐一增加。通过移除候选原子集中数量同样逐一增加的可信度较低的原子,使选择的原子与待识别人脸图像具有最相似的结构,能较好地重构人脸。采用稀疏表示分类(SRC)框架,分别与基于SP、SASP、正交匹配追踪(OMP)、OMP-cholesky的人脸识别相比,在ORL和Yale B人脸数据库上的实验结果表明,该算法有最高的识别率。 Subspace Pursuit(SP) algorithm needs prior knowledge of sparseness in face recognition based on sparse representation because its candidate atoms have the same number with sparseness. Against the disadvantage,this paper proposes an improved subspace pursuit algorithm. This algorithm introduces backtracking iterative optimization algorithm in atom selection to ensure the candidate atoms increase with the number of iterations simultaneously. By removing the candidate atoms with low credibility to make sure that the chosen atoms have the most similar structure with the identifying face image,to ensure that the presented algorithm can reconstruct faces well. The experimental results show that the improved algorithm have the highest recognition rate in face recognition on ORL and Yale B face database respectively compared with SP,Sparsity Adaptive Subspace Pursuit(SASP),Orthogonal Matching Pursuit(OMP)and the OMP-cholesky algorithm employing in the Sparse Representation Classification(SRC)frame.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第4期211-216,共6页 Computer Engineering and Applications
基金 国家自然科学基金青年项目(No.61202439) 湖南省教育厅优秀青年项目(No.12B003) 湖南省教育厅一般项目(No.12C0011) 湖南省交通运输厅科技进步与创新项目(No.201334)
关键词 稀疏编码 稀疏表示 人脸识别 正交匹配追踪 子空间追踪 sparse coding sparse representation face recognition Orthogonal Matching Pursuit subspace tracking
  • 相关文献

参考文献14

  • 1Zhao W,Chellappa R,Phillips P J,et al.Face recognition:A literature survey[J].ACM Computing Surveys,2003,35(4):399-458.
  • 2Brunelli R,Poggio T.Face recognition:Feature versus templates[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(10):1042-1052.
  • 3Wu Chuang-Hsien,Wei Wen-Li,Lin Jen-Chun,et al.Speaking effect removal on emotion recognition from facial expressions based on eigenface conversion[J].IEEE Transactions on Multimedia,2013,15(8):1732-1744.
  • 4Wright J,Yang A Y,Ganesh A.Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
  • 5Hu Yiqun,Mian Ajmal S,Robyn O.Face recognition using sparse approximated nearest points between image sets[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(10):1992-2004.
  • 6Deng Weihong,Hu Jiani,Guo Jun.Extended SRC:Undersampled face recognition via intraclass variant dictionary[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(9):1864-1870.
  • 7Lu Can-Yi,Min Hai,Gui Jie.Face recognition via weighted sparse representation[J].Journal of Visual Communication and Image Representation,2013,24(2):111-116.
  • 8Huang K,Aviyente S.Sparse representation for signal classification[C]//Proc of NIPS,Vancouver,Canada,2006:609-616.
  • 9Wagner A,Wright J,Ganesh A.Towards a practical face recognition system:robust alignment and illumination by sparse representation[J].IEEE Transactions on Pattern analysis and machine intelligence,2012,34(2):372-386.
  • 10Pati Y C,Rezaiifar R,Krishnaprasad P S.Orthogonal matching pursuit:Recursive function approximation with applications to wavelet decomposition[C]//1993 Conference Record of The Twenty-Seventh Asilomar Conference on Signals,Systems and Computers,Pacific Grove,USA,1993,1:40-44.

二级参考文献45

  • 1D L Donoho.Compressed sensing[J].IEEE Trans Info Theory,2006,52(4):1289-1306.
  • 2E J Candès,J Romberg,T Tao.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Trans Info Theory,2006,52(2):489-509.
  • 3E J Candès,T Tao.Near-optimal signal recovery from random projections:Universal encoding strategies[J].IEEE Trans Info Theory,2006,52(12):5406-5425.
  • 4E J Candès,T Tao.Decoding by linear programming[J].IEEE Trans Info Theory,2005,51(12):4203-4215.
  • 5S S Chen,D L Donoho,M A.Saunders.Atomic decomposition by basis pursuit[J].SIAM Rev,2001,43(1):129-159.
  • 6S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.
  • 7J A Tropp.Greed is good:Algorithmic results for sparse approximation[J].IEEE Trans Info Theory,2004,50(10):2231-2242.
  • 8J A Tropp,A C Gilbert.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Trans Info Theory,2007,53(12):4655-4666.
  • 9D L Donoho,Y Tsaig,I Drori,etc.Sparse solution of underdetermined linear equations by stagewise Orthogonal Matching Pursuit .2007,http://www-stat.stanford.edu/-donoho/Reports/2006/StOMP-20060403.pdf.
  • 10D Needell,R Vershynin.Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit .http://arxiv.org/abs/0707.4203,2007-7-28/2008-3-15.

共引文献122

同被引文献11

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部