期刊文献+

语音信号特征选择优化提取仿真研究 被引量:7

Application of Ant Colony Optimization in Speech Signal Feature Selection
下载PDF
导出
摘要 在语音识别系统中,表示语音信号的高维特征矢量会使系统复杂度上升。由于语音信号存在无用和冗余信息,为了去除冗余和不相关特征,当语音信号经过预处理、提取特征参数之后,使用蚁群优化算法在特征矢量空间中选择本质特征,从而以不牺牲识别率为前提完成降维。利用隐马尔科夫模型(HMM)进行语音识别的仿真结果表明,在汉语数字语音识别系统上,蚁群优化算法的性能优于传统的遗传算法和未进行特征选择的原始特征集合。分析结果显示利用蚁群优化的特征集合可以提高识别系统的性能,而且识别速度得到了提高。 In speech recognition system,high dimensionality feature vectors which represent speech signal can make complexity rise. In order to remove redundant and irrelevant features,a method based on ant colony optimization was employed after preprocessing and features extracting,which optimized dimensionality of feature space by selecting relevant underlying features. The simulations via a Hidden Markov Model in speech recognition show that the performance of the proposed algorithm is better than traditional genetic algorithm and feature set without optimization in Mandarin digit speech recognition system. The results of analysis indicate that with the optimized feature set,the performance of the recognition system is improved. Moreover,the speed of recognition is increased by using ant colony optimization.
出处 《计算机仿真》 CSCD 北大核心 2016年第2期409-412,417,共5页 Computer Simulation
基金 国家自然科学基金项目资助(61473041) 内蒙古高校科研项目(NJZY13139)
关键词 蚁群优化 特征提取 特征选择 语音识别 Ant colony optimization Feature extraction Feature selection Speech recognition
  • 相关文献

参考文献15

  • 1S Nemati, M E Basiri. Text - independent speaker verication using ant colony optimization - based selected features [ J ]. Expert Sys- tems with Applications, 2011,38 ( 1 ) : 620 - 630.
  • 2Wu Qiang, Zhang Liqing and Shi Guangchuan. Robust Muhifactor Speech Feature Extraction Based on Gabor Analysis [ J ]. IEEE Trans. on Audio, Speech, and Language Processing, 2011,19 (4) : 927 -936.
  • 3杨鸿章.基于蚁群算法特征选择的语音情感识别[J].计算机仿真,2013,30(4):377-381. 被引量:5
  • 4S Nemati, R Boostani, M D Jazi. A Novel Text - Independent Speaker Verification System Using Ant Colony Optimization Algo- rithm [ J ]. Lecture Notes in Computer Science, 2008, ( 5099 ) :421 - 429.
  • 5M A H A1 - Saedi, A A G Azzawi. Face Recognition Based on Mixed between Selected Feature by Muhiwavelet and Particle Swarm Optimization[ C ]. Proceedings of the 2010 Developments in E - systems Engineering. USA : IEEE, 2010 : 199 - 204.election.
  • 6C S Jung, M Y Kim, H G Kang. Selecting Feature Frames for Au- tomatic Speaker Recognition Using Mutual Information [ J 1. IEEE Transactions on Audio, Speech, and Language Processing, 2010, 18(6) :1332 - 1340.
  • 7R G Ramani, S V Kumar, S G Jacob. Predicting fault - prone soft- ware modules using feature selection and classification through data mining algorithms[C]. Computational Intelligence & Compu- ting Research (ICCIC). USA: IEEE, 2012:1 -4.
  • 8P Ghamisi, J A Benediktsson. Feature selection based on hybrid- ization of genetic algorithm and particle swarm optimization [ J ]. IEEE Geoscience and Remote Sensing Letters, 2015,12 ( 2 ) : 309 -313.
  • 9Z Xue, P Du, H Su. Harmonic analysis for hyperspectral image classification integrated with PSO optimized SVM [ J ]. IEEE Jour- nal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7(6): 2131 -2146.
  • 10J Wu, Z Lu. A novel hybrid Genetic Algorithm and Simulated Annealing for feature selection and kernel optimization in support vector regression[ C]. 2012 IEEE Fifth International Conference on Advanced Computational Intelligence. USA: IEEE, 2012:999 - 1003.

二级参考文献36

  • 1钱忠良,王文军.不变矩目标特征描述误差分析和基于上层建筑不变矩的舰船识别[J].电子测量与仪器学报,1994,8(3):23-31. 被引量:4
  • 2国辛纯,郭继昌,窦修全.基于HMM的语音信号情感识别研究[J].电子测量技术,2006,29(5):69-70. 被引量:10
  • 3张石清.基于模糊支持向量机的语音情感识别[J].台州学院学报,2006,28(6):52-55. 被引量:3
  • 4H Liu,R Setiono. A Probabilistic Approach to Feature Selection: A filter Solution [A]. Proc of Int' 1 Conf on Machine Learning[C]. 1995. 319-327.
  • 5B Chakraboriy. Genetic Algorithm with Fuzzy Fitness Function for Feature Selection[A]. Proc of the 2002 IEEE International Symp on Industrial Electronics. Vol 1[C]. 2002. 315 - 319.
  • 6Jos Bins,Bruce A Draper. Feature Selection from Huge Feature Sets[A]. Proc of the 8th IEEE Conf on Computer Vision and Pattern Recognition. Vol 2[C]. 2001. 159-165.
  • 7Sanmay Das. Filters,Wrappers and a Boosting Based Hybrid for Feature Selection[A]. Proc of the 8th Int'l Conf on Machine Lemrning[C]. 2001.74-81.
  • 8Huang Yuan, Shian-Shyong Tseng, Wu Gangshan, et al. A Two-Phase Feature Selection Method Using Both Filter and Wrapper[A]. Proc of 1999 IEEE Inter'l Conf on Systems,Man, and Cybernetics. Vol 2[C]. 1999. 132 - 136.
  • 9R Kohavi,G H John. Wrappers for Feature Subset Selection[J]. Artificial Intelligence Journal, 1997,97(1-2) : 273-324.
  • 10Solberg A H S,Jain A K. Texture Fusion and Feature Selection Applied to SAR Imagery[J], IEEE Trans on Geoscience and Remote Sensing, 1997,35(2) : 475-479.

共引文献67

同被引文献68

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部