期刊文献+

基于贝叶斯网络的海量数据多维分类学习方法研究 被引量:4

Bayesian net based multi-dimensional classification learning algorithm
下载PDF
导出
摘要 为了提高多维分类的执行效率,同时保持高的预测准确性,提出了一种基于贝叶斯网络的多维分类学习方法。将多维分类问题描述为条件概率分布问题。根据类别向量之间的依赖关系建立了条件树贝叶斯网络模型。最后,根据训练数据集对条件树贝叶斯网络模型的结构和参数进行学习,并提出了一种多维分类预测算法。大量的真实数据集实验表明,提出的方法与当前最好的多维分类算法MMOC相比,在保持高准确性的同时将模型的训练时间降低了两个数量级。因此,提出的方法更适用于海量数据的多维分类应用中。 In order to improve the execution efficiency of multi-dimensional classification while preserving high prediction accuracy,this paper proposed a Bayesian net based multi-dimensional classification learning algorithm. Firstly,it described the problem of multi-dimensional classification as the problem of conditional probability distribution. Secondly,it built a conditional tree Bayesian net model according to the dependence of class vector. Finally,it learnt the structure and parameters of the conditional tree model based on the training data set,and proposed a multi-dimensional classification prediction algorithm.Massive experiments on real dataset show that,compared with the state-of-the-art multi-dimensional classification algorithm MMOC,the proposed algorithm improves the execution efficiency of multi-dimensional classification while preserving high prediction accuracy. So,the proposed algorithm is more suitable in multi-dimensional classification for massive data.
作者 陈池梅 张林
出处 《计算机应用研究》 CSCD 北大核心 2016年第3期689-692,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61170306)
关键词 多维分类 贝叶斯网络 机器学习 海量数据 multi-dimensional classification Bayesian network machine learning massive data
  • 相关文献

参考文献15

  • 1刘红岩,陈剑,陈国青.数据挖掘中的数据分类算法综述[J].清华大学学报(自然科学版),2002,42(6):727-730. 被引量:168
  • 2苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:386
  • 3邹权,郭茂祖,刘扬,王峻.类别不平衡的分类方法及在生物信息学中的应用[J].计算机研究与发展,2010,47(8):1407-1414. 被引量:26
  • 4Li Lijia, Su Hao, Lim Yongwhan, et al. Objects as attributes for scene classification[M] //Trends and Topics in Computer Vision. Berlin:Springer, 2012:57-69.
  • 5曹爱春,杨晓艇,侯旭东.最小二乘支持向量机和证据理论融合的体育视频分类[J].计算机工程与应用,2013,49(23):95-99. 被引量:9
  • 6Yu Chienchih, Chang Hsiaoping. Multi-dimensional classification and evaluation of B2E mobile services for the tourism industry[J] . The Journal of Global Business Management, 2012, 8(1):42-51.
  • 7Boutell M R, Luo Jiebo, Shen Xipeng, et al. Learning multi-label scene classification[J] . Pattern Recognition, 2004, 37(9):1757-1771.
  • 8Cheng Weiwei, Hüllermeier E. Combining instance-based learning and logistic regression for multilabel classification[J] . Machine Learning, 2009, 76(2-3):211-225.
  • 9Zhang Yi, Schneider J. Maximum margin output coding[C] //Proc of the 29th International Conference on Machine Learning. 2012:1-8.
  • 10Bielza C, Li Guangdi, Larranaga P. Multi-dimensional classification with Bayesian networks[J] . International Journal of Approximate Reasoning, 2011, 52(6):705-727.

二级参考文献23

共引文献583

同被引文献36

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部