期刊文献+

基于社区结构的科研合作关系分析与预测 被引量:4

Collaboration analysis and prediction in scientific research network based on community structure
下载PDF
导出
摘要 科研合作关系分析和预测针对网络的结构信息预测未来哪些学者间会产生合作关系进行研究,对于理解网络信息传播和动态变化具有重要的意义。在主流的基于拓扑属性的关系预测算法基础上提出了一种基于社区结构信息的合作关系预测模型。首先分析社区发现算法下科研网络的链接分布规律及给出模型构建的理论依据,然后构造引入社区拓扑结构信息的改进算法,最后采用不同社区发现算法进行实验。该方法在实验效果和性能上要优于一些经典的算法,说明该算法能够有效地引入社区结构信息对真实的科研合作网络关系预测问题建模,并为科研合作关系分析预测这一问题提供一种新的思路。 Collaboration relation analysis and prediction aims to predict collaboration between scholars according to the network's structural information. It is of great significance to information diffusion and dynamic changes. This paper proposed a new algorithm based on the community structure to improve the classic prediction metric which incorporating the topological properties. Firstly,it gave links concurrent distribution under community detection algorithm in collaboration network and theoretical basis for model construction,and then proposed an improved predicting model based on community topology information. Finally,it used different community discovery algorithms for extensive experiment. The experimental results show that the effect and performance of this method is better than some classical algorithms. Moreover,such algorithm can effectively introduce community structure information on the collaboration prediction in real scientific research network and provide a new idea for analysis and forecast of such prediction problem.
出处 《计算机应用研究》 CSCD 北大核心 2016年第3期701-705,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61003045) 广东省教育部产学研结合项目(2012B091100043)
关键词 科研网络 社区结构 合作关系预测 关系分析 社区信息 research network community structure collaboration relation prediction relation analysis community information
  • 相关文献

参考文献15

  • 1Ye Qiang, Li Tong, Law R. A co-authorship network analysis of tourism and hospitality research collaboration[J] . Journal of Hospitality & Tourism Research, 2013, 37(1):51-76.
  • 2刘凤朝,刘靓,马荣康.基于973计划项目资助的科研合作网络演变分析[J].科学学与科学技术管理,2013,34(6):14-21. 被引量:15
  • 3吕丽,张素娟,樊锁海.一个科研合作复杂网络模型的实证研究[J].暨南大学学报(自然科学与医学版),2011,32(5):462-467. 被引量:5
  • 4avuolu A, Türker I. Patterns of collaboration in four scientific disciplines of the Turkish collaboration network[J] . Physica A:Statistical Mechanics and its Applications, 2014.
  • 5Wu Ying, Duan Zhiguang. International scientific collaboration in research of depression based on social network analysis[C] //Proc of the International Conference on the Modern Development of Humanities and Social Science. 2013.
  • 6Liben-Nowell D, Kleinberg J. The link-prediction problem for social networks[J] . Journal of the American Society for Information Science and Technology, 2007, 58(7):1019-1031.
  • 7Lyu Linyuan, Zhou Tao. Link prediction in complex networks:a survey[J] . Physica A:Statistical Mechanics and its Applications, 2011, 390(6):1150-1170.
  • 8Tang Jie, Wu Sen, Sun Jimeng, et al. Cross-domain collaboration recommendation[C] //Proc of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. [S. l.] :ACM Press, 2012:1285-1293.
  • 9Sun Yizhou, Barber R, Gupta M, et al. Co-author relationship prediction in heterogeneous bibliographic networks[C] //Proc of International Conference on Advances in Social Networks Analysis and Mining. [S. l.] :IEEE Press, 2011:121-128.
  • 10Girvan M, Newman M E J. Community structure in social and biological networks[J] . Proc of the National Academy of Sciences, 2002, 99(12):7821-7826.

二级参考文献16

共引文献18

同被引文献159

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部