期刊文献+

基于局部区域信息的医学图像分割及偏移场矫正方法

Segmentation and bias corrected method for medical image based on local region information
下载PDF
导出
摘要 针对医学图像中由于偏移场的存在而导致图像灰度不均匀的问题,提出了一种基于局部区域信息的医学图像分割及偏移场矫正方法,以矫正偏移场使图像变为灰度均匀。该方法利用图像局部区域信息,通过拟合图像和原始图像构造能量函数,采用变分水平集方法进行求解。实验结果表明,该方法能够有效地实现医学图像分割及偏移场矫正,与其他分割及偏移场矫正方法相比,该方法具有较高的分割及偏移场矫正的精度和效率。 To address the bias field leading to image intensity inhomogeneity of medical image,this paper proposed a segmentation and bias corrected method for medical image based on local region information,to make the image intensity homogeneity. Based on the local region information of image,this method constructed the energy function by fitting image and original image,which was minimized by variational level set method. Experiment results show that the presented method can accurately and fast segment and correct the medical image. Compared with the traditional methods,this method has more precise and efficient in segmentation and bias corrected.
出处 《计算机应用研究》 CSCD 北大核心 2016年第3期945-947,952,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61402274) 陕西省自然科学基础研究计划资助项目(2011JM8014) 陕西师范大学中央高校基本科研业务费资助项目(GK201402040 GK201302029) 陕西师范大学学习科学交叉学科培育计划资助和陕西师范大学实验技术研究项目(SYJS201329)
关键词 水平集 偏移场矫正 图像分割 灰度不均匀 医学图像 level set bias correction image segmentation intensity inhomogeneity medical image
  • 相关文献

参考文献15

  • 1Kuo H C, Giger M L, Reiser I, et al. Level set segmentation of breast masses in contrast-enhanced dedicated breast CT and evaluation of stopping criteria[J] . Journal of Digital Imaging, 2014, 27(2):237-47.
  • 2Wang Li, Shi Feng, Gang Li, et al. Segmentation of neonatal brain MR images using patch-driven level sets[J] . NeuroImage, 2014, 84(1):141-158.
  • 3Tang Jinshan. A multi-direction GVF snake for the segmentation of skin cancer images[J] . Pattern Recognition, 2009, 42(6):1172-1179.
  • 4Li Kuan, Lu Zhi, Liu Wenyin, et al. Cytoplasm and nucleus segmentation in cervical smear images using radiating GVF snake[J] . Pattern Recognition, 2012, 45(4):1255-1264.
  • 5Wang Yuanquan, Liu Lixiong, Zhang Hua, et al. Image segmentation using active contours with normal biased GVF external force[J] . IEEE Signal Processing Letters, 2010, 17(10):875-878.
  • 6Chan T F, Vese L A. Active contours without edges[J] . IEEE Trans on Image Processing, 2001, 10(2):266 -277.
  • 7Wang Lingfeng, Pan Chunhong. Robust level set image segmentation via a local correntropy-based K-means clustering[J] . Pattern Recognition, 2014, 47(5):1917-1925.
  • 8Yang Hongzhe, Zhao Lihui, Tang Songyuan, et al. A variational le-vel set segmentation formulation based on signal model for images in the presence of intensity inhomogeneity[J] . International Journal of Imaging Systems and Technology, 2014, 24(1):45-51.
  • 9Li Chunming, Kao C Y, Gore J C, et al. Minimization of region-scala-ble fitting energy for image segmentation[J] . IEEE Trans on Image Processing, 2008, 17(10):1940- 1949.
  • 10Liu Shigang, Peng Yali. A local region-based Chan-Vese model for image segmentation[J] . Pattern Recognition, 2012, 45(7):2769-2779.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部