期刊文献+

多信息融合的视频运动目标阴影去除算法 被引量:1

Multiple information fusion of video moving target shadow removal algorithm
下载PDF
导出
摘要 针对传统HSV空间阴影去除模型中阈值难以确定、计算复杂及检测效率较低等问题,在对传统运动目标阴影去除算法进行深入研究的基础上,首先融入一阶梯度信息对传统HSV空间阴影去除模型的不足之处进行针对性改进,然后在此基础上融入反射比不变量提出了一种多信息融合的视频运动目标阴影去除算法。该算法在改进HSV空间阴影去除算法的基础上,进一步引入阴影候选像素及其对应背景区域像素的反射比不变特性来实现阴影区域更为精确的检测,从而有效区分并去除运动目标的阴影像素。实验结果表明,该算法在实际应用中具有较高的有效性和通用性。 In view of the series of problems that it is difficult to determine the threshold value in the model of removing the traditional HSV space shadow, and complex to accomplish the computation as well as the improvement of low detection efficiency, which is based on the in-depth algorithmic study for the traditional shadow removing of a moving target, focuses on the purposeful improvement of the first-order gradient information deficiencies in the model of removing the traditional HSV space shadow. There- after, it puts forward a new shadow removal algorithm of multiple video information fusions by introducing the reflectance invariants into it. The experiment results have illustrated that this algorithm possesses a higher validity and universality in the practical appli- cations. It can not only improve the algorithm of the traditional HSV space shadow removal, but also realize the more exact detec- tions in the shadow area through the integration of reflectance invariants characteristics between the shadow candidate pixels and the background pixels. In the end, this algorithm is able to effectively distinguish and remove the shadow pixels of the moving object.
作者 张鹏 杨燕翔
出处 《电视技术》 北大核心 2016年第2期59-64,126,共7页 Video Engineering
关键词 阴影去除 一阶梯度信息 反射比 阴影候选像素 shadow removal first order gradient information reflectance shadow candidate pixels
  • 相关文献

参考文献9

二级参考文献54

  • 1朱明旱,罗大庸,曹倩霞.帧间差分与背景差分相融合的运动目标检测算法[J].计算机测量与控制,2005,13(3):215-217. 被引量:77
  • 2陈柏生,陈锻生.基于归一化rgb彩色模型的运动阴影检测[J].计算机应用,2006,26(8):1879-1881. 被引量:15
  • 3付萍,方帅,徐心和,薛定宇.视频监控系统中运动目标检测的阴影去除方法[J].计算机工程,2007,33(10):22-24. 被引量:26
  • 4PRATI A,MIKIC I,GRANA C,et al.Shadow detection algorithms for traffic flow analysis:a comparative study[Z].IEEE International Conference on Intelligent Transportation Systems,2001,340–345.
  • 5IRVIN R B,MCKEOWN D m j.Methods for exploiting the relationship between buildings and their shadows in aerial imagery[J].IEEE Transactions on Systems,Man,and Cybernetics.1989,19(6):1564-1575.
  • 6CUCCHIARA R,GRANA C,PICCARDI M,et al.Improving shadow suppression in moving object detection with HSV color information[Z].IEEE Transportation Systems Conference Proceedings,Oakland,USA,2001.
  • 7JACCQUES J C S,JUNG C R,MUSSE S R,Background substration and shadow detection in grayscale video sequenle[J].IEEE computer Press,2005,PP:189-196.
  • 8GREST D,FRAHM J-M,KOCH R.A color similarity measure for robust shadow removal in realtime[J].In Vision,Modeling and Visualization,2003,253-260.
  • 9WANG J M,CHUNG Y C,CHANG C L,et al.Shadow detection and removal for traffic images[J].IEEE International Conference on Networking,Sensing and Control,2004,649-654.
  • 10Cucchiara R,Grana C,Piccardi M,et al.Improving shadow suppression in moving object detection with HSV color information[A].Proc IEEE Int Conf Intelligent Trans Systems[C].Oakland:IEEE,2001.334-339.

共引文献22

同被引文献6

引证文献1

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部