期刊文献+

大型燃气锅炉排烟余热深度利用改造工程实测分析 被引量:3

Measurement analysis of large gas-fired boiler flue gas heat deep recovery reconstruction project
下载PDF
导出
摘要 针对严寒地区大型煤改气供热锅炉燃料成本高和烟雾大问题,采用自主研发的防腐高效低阻烟气冷凝热回收装置,对新疆骑马山热力站70 MW大型燃气供热锅炉进行了烟气冷凝余热和烟气冷凝水深度回收与除雾节能改造,改造后新增供热面积30万m^2。实测结果表明:在不同锅炉负荷下,烟温从88~180℃降到33~54℃,节能率达13%,锅炉总效率达107.3%;辅以自然空气冷却除湿后,排烟温度降到21~35℃;每台锅炉每天回收烟气冷凝水70~130 t,烟气除湿率达70%,明显减少了烟雾排放;烟气冷凝热回收利用节能、节水、减排、经济效益显著。 Based on the problems of high flue cost and heavy fog emission of the large boiler transforming from coal-fired to gas-fired in severe cold zone, using the anti-corrosive, high-efficient and low-resistant flue gas condensing heat recovery technology and facility, applies the full recovery of the flue gas condensate heat and condensate water heat and energy saving renovation of defogging to the large gas-fired heating boiler with heat capacity of 70 MW at Qimashan heating station in Xinjiang. The heating area increases 0.3 million square meters after renovation. The test results show that the exhaust gas temperature can drop from 88 - 180℃ to 33- 54℃ under different boiler loads, the efficiency of gas utilization can increase 13% and the total efficiency of gas-fired boiler can reach 107.3%. Supplemented by natural air cooling and dehumidifying, exhaust gas temperature can reach 21- 35℃, each boiler produces flue gas condensate water of 70- 130 tons per day, the flue gas dehumidification rate reaches 70%, which significantly improves the fog emissions and contributes to energy saving, water saving, emission reduction and economic benefit.
出处 《暖通空调》 北大核心 2016年第2期74-77,11,共5页 Heating Ventilating & Air Conditioning
基金 北京市教委创新能力提升计划项目(编号:PXM2014_014210_000002) 北京学者计划项目
关键词 燃气锅炉 烟气冷凝热 冷凝水 热效率 烟雾 改造工程 实测 gas-fired boiler, flue gas condensate heat, condensate water, heat efficiency, fog, retrofitting project, test
  • 相关文献

参考文献6

二级参考文献29

  • 1杨世铭.传热学[M].北京:高等教育出版社,1997(3)..
  • 2茹卡乌斯卡斯AA 马昌文 等译.换热器内的对流传热[M].北京:科学出版社,1986.292-300.
  • 3Vuddagiri S R, Eubank P T. Condensation of mixed vapor s and thermodynamics. AICHE Journal, 1998,44(11) :2526 - 2541.
  • 4Yang Dongmei, Wang Suilin. Heat and mass transfer of laminar flue gas between two parallel flat plates.In: Energy Conversion and Application (ICECA'2001). Wuhan: Huazhong University Science and Technology Press, 2001. 589 - 592.
  • 5Srzic V, Soliman H M, Ormiston S J. Analysis of laminar mixed-convection condensation on isothermal plates using the full boundary-layer equation: mixture of a vapor and a lighter gas. Int J Heat and Mass Transfer, 1999, 42(4) :685 - 695.
  • 6Burghardt Andrzej, Berezowski Marek. Comparison of various mass transport models in multicomponent condensation. Chemical Engineering and Processing,1992, 30(3):161 - 171.
  • 7Kang H C, Kim M H. Characteristics of film condensation of supersaturated steam-air mixture on a flat plate Int J Multiphase Flow, 1999, 25(8):1601 - 1618.
  • 8徐建中.分布式供电和冷热电联产的前景.www.china5e. com/focus/second/default. php- 27k.
  • 9Lu Zhao, Wang Suilin, Zhao Xiumin, et al. Effect of condensing gas boiler on energy saving and environmental protection. In: Energy Conversion and Application(ICECA '2001). Wuhan: Huazhong University of Science and Technology Press, 2001. 192 - 195.
  • 10Dimitar Kolev,Nikolai Kolev. Performance characteristics of a new type of lamellar heat exchanger for the utilization of flue gas heat. Applied Thermal Engineering, 2002,22:1919 - 1930.

共引文献80

同被引文献15

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部