期刊文献+

ELM在航空铅酸蓄电池容量检测中的应用 被引量:1

Aviation lead-acid battery capacity detection using extreme learning machine
下载PDF
导出
摘要 针对传统BP神经网络训练速度慢、参数选择难、易陷入局部极值等缺点,提出基于极限学习机(ELM)的航空铅酸蓄电池容量检测模型。极限学习机是一种新的单隐层前馈神经网络(SLFNs)学习算法,不但可以简化参数选择过程,而且可以提高网络的训练速度。在确定最优参数的基础上,建立ELM的航空铅酸蓄电池容量检测模型。实验结果表明:LM获得较高的分类准确率和较快的训练速度,从而验证ELM用于航空铅酸蓄电池容量检测模型的可行性和有效性。 Aiming at the traditional BP neural network models are inefficient and prone to fall into local extreme values, the extreme learning machine (ELM) was proposed as an alternative in the detection of aviation lead-acid battery capacities. This new learning algorithm for the studies of single-hidden layer feed forward neural networks(SLFNs) can both simplify the parameter selection process and improve the network training speed. The optimal parameters obtained by this algorithm were used to design a model for detecting aviation lead-acid battery capacities. According to the experimental results, the ELM has made classification more accurate and has quickened network training. Thus, it can be used to test the capacity of aviation lead-acid batteries.
出处 《中国测试》 CAS 北大核心 2016年第2期119-121,共3页 China Measurement & Test
基金 中国民用航空飞行学院自然科学面上项目(XM0514)
关键词 极限学习机 航空铅酸蓄电池 容量预测 检测模型 extreme learning machine aviation lead-acid battery capacity detection detection model
  • 相关文献

参考文献7

  • 1胡恒生.航空化学电源[D].徐州:徐州空军学院,2007.
  • 2欧阳名三,余世杰.VRLA蓄电池容量预测技术的现状及发展[J].蓄电池,2004,41(2):59-63. 被引量:51
  • 3HUANG G B,ZHU Q Y,SIEW C K.Extreme learning machine:theory and applications[J].Neurocomputing,2006,70(1):489-501.
  • 4LAN Y,SOH Y C,HUANG G B.Ensemble of online sequential extreme learning machine[J].Neurocomputing,2009,72(13-15):3391-3395.
  • 5HUANG G B,ZHU Q Y,SIEW C K.Real-time learning capability of neural networks[C]∥IEEE Transact ions on Neural Networks,2006,17(4):863-878.
  • 6Modeling and evaluation of valve-regulated lead-acid batteries[R].Espoo:Helsinki University of Technology Control Engineering Laboratory,2004.
  • 7VICTOR L G.Battery charge cycle counter:US005136620A[P].1992.

二级参考文献37

  • 1[3]R.West,K.Mackamul,and G.Duran.Development of a Fully Integrated PV System for Residential Applications Phase I Annual Technical Report,February 27,1998...August 31,1999 National Renewable Energy Laboratory.March 2000:22~23.
  • 2[4]Powerware5115 UPS,Powerware Corporation.
  • 3[5]Technologies for Advanced Vehicles Performance and Cost Expectations:98.
  • 4[6]James P. Dunlop Brian N.Farhi RECOMMENDATIONS FOR MAXIMIZING BATTERY LIFE IN PHOTOVOLTAIC SYSTEMS:A REVIEW OF LESSONS LEARNED Proceedings of Forum 2001 Solar Energy: The Power to Choose April 21~25,2001 Washington,DC
  • 5[7]Pan shangzhi,Qian zhaoming,Lei na. A novel charge and discharge equalization scheme for battery strings Journal of Zhejiang University Vol.2 No.1,2000:56~59.
  • 6[8]Matthew A.et al. Charging Algorithms for Increasing Lead Acid Battery Cycle Life for Electric Vehicles.National Renewable Energy Laboratory 1617 Cole Boulevard 2002.3.14.
  • 7[9]James P.Dunlop,P.E.Batteries and Charge Control in Stand-Alone Photovoltaic Systems Fundamentals and Application January 15,1997 Prepared for:Sandia National Laboratories Photovoltaic Systems Applications Dept.
  • 8[15]Sunfengchun Zhang chengning Gao haitao. Battery management system with state of charge indicator for electric Vehicles,[J].Journal of Beijing Institute of Technology 1998,7.
  • 9[17]Alan Pilkington, Romano Dyerson. Extending simultaneous engineering:Electric vehicle supply chains and new production development Forthcoming in International Journal of Technology Management,(2000)Vol.23,No.1/2.
  • 10[18]CCB Valve regulated lead-acid(VRLA)battery user's instruction & manual,CCB Industrial Battery Company.

共引文献50

同被引文献18

  • 1ADNAN N, PARNTHEP J, PITISAN K, et al. Effect and limitation of free lime content in cement-fly ash mixtures [ J ]. Construction and Building Materials, 2016, 102(1) : 515-530.
  • 2KRITTIYA K, PITISAN K, TAWEECHAI S, et al. Effect of free lime content on properties of cement-fly ash mixtures [ J ]. Construction and Building Materials, 2013, 38(2) : 829-836.
  • 3LI W, WANG D, ZHOU X, et al. An improved multi- source based soft sensor for measuring cement free lime content [ J ]. Information Sciences, 2015, 323 (12) : 94-105.
  • 4LI W, WANG D, CHAI T. Multisource data ensemble modeling for clinker free lime content estimate in rotary kiln sintering processes [ J ]. IEEE Transactions on Systems Man & Cybernetics Systems, 2015, 45 ( 2 ) : 303 -314.
  • 5HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine : Theory and applications [ J ]. Neurocomputing, 2006, 70(1-3): 489-501.
  • 6PAK K W, YANG Z X, CHI M V, et al. Real-time fault diagnosis for gas turbine generator systems using extreme learning machine [ J ]. Neurocomputing, 2014, 128 ( 5 ) : 249 -257.
  • 7ELLIACKIN M N F, TERESA B. Investigating the use of ahernative topologies on performance of the PSO- ELM[J]. Neuroeomputing, 2014, 127(3): 4-12.
  • 8XU W X, GENG ZH Q, ZHU Q X, et al. A piecewise linear chaotic map and sequential quadratic programming based robust hybrid particle swarm optimization [ J ]. Information Sciences, 2013, 218(1) : 85-102.
  • 9YAO X, LIU Y, LIN G M. Evolutionary programming made faster [ J ], IEEE Transactions on Evolutionary Computation, 1999, 3(2): 82-102.
  • 10YUAN Jingling,ZHONG Luo,DU nongfu,TAO Haizheng.Prediction of Free Lime Content in Cement Clinker Based on RBF Neural Network[J].Journal of Wuhan University of Technology(Materials Science),2012,27(1):187-190. 被引量:5

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部