期刊文献+

基于统计纹理特征的打印文档认证 被引量:4

Print document identification based on statistical texture feature
原文传递
导出
摘要 为了解决计算机打印文档的自动鉴别,提出了一种基于中文汉字显微放大图像灰度共生矩阵统计纹理特征的打印文档鉴别算法.首先,从理论模型上分析了激光打印机传动系统对打印字符潜影的影响;接着对字符图像的22维灰度共生矩阵统计纹理特征进行计算,并利用ReliefF特征选择算法进行特征选择;最后提取显微字符图像激光扫描方向和纸张行进方向的灰度共生矩阵纹理特征并进行融合,利用最近邻和支持向量机2种分类器进行分类鉴别.在两种样本集上的实验结果表明:特征融合后的鉴别性能有所提高;支持向量机的分类鉴别性能优于最近邻分类器,在相同字无重复样本集上的分类准确率和平均召回率分别为96.5%和96.64%,在相同字有重复样本集上分类准确率和平均召回率分别为98%和98.18%;激光打印机品牌分类准确率为98%.上述的实验结果显示该方法具有良好的打印文档分类鉴别性能. In order to solve the automatic identification of laser print documents,aprint document identification algorithm based on statistical texture features computed from gray-level co-occurrence matrix of Chinese character microscopic images was proposed.First,the laser printer transmission system's influence on the latent images of the printed character was analyzed on the theoretical model.Then twenty-two statistical texture features were calculated;and the ReliefF algorithm was used for feature selection.Finally,the statistical texture features of laser scanning direction and paper moving direction were fused;and the nearest neighbor classifier and support vector machine were used for print document identification.The experimental results on two sample sets reveal that the feature fusion is beneficial to the improvement of the identification performance;the identification performance of support vector machine is better than the nearest neighbor classifier;the average classification identification rate and the average recall rate of the same word sets without duplicate sample are 96.5%and 96.64%respectively;the average classification identification rate and the average recall rate of the same word sets with duplicate sample are 98%and 98.18%respectively;and the average printer brand classification identification rate is 98%.The experimental results show that the method has a good print document identification performance.
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2016年第1期154-160,共7页 Engineering Journal of Wuhan University
基金 公安部重大项目(编号:2014JSYJA017) 湖北省教育厅科学技术研究项目(编号:B2015033) 湖北工程学院科学研究项目(编号:201511)
关键词 打印文档 灰度共生矩阵 特征选择 支持向量机 统计纹理特征 print document gray-level co-occurrence matrix feature selection support vector machine
  • 相关文献

参考文献14

  • 1涂岩恺,陈庆虎,邓伟.计算机激光打印文档鉴别与检索[J].电子与信息学报,2011,33(2):499-503. 被引量:13
  • 2Mikkilineni A K, Chiang P J, Ali G N, et al. Printer identification based on graylevel co-occurrence features for security and forensic applicationsEC~//Proceedings of the SPIE International Conference on.
  • 3Security, Steganography,and Watermarking of Multimedia Con- tents ~. San Jose. SPIE Press, 2005:430-440. Mikkilineni A K, Khanna N, Delp E J. Texture based attacks on intrinsic signature based printer identifica- tion[C-I// Proc. of SPIE-IS~T Electronic Imaging. San Jose :SPIE Press, 2010.. 75410T-75410T-12.
  • 4Umadevi M, Agarwal A, Rao C R. Printed text char- acterization for identifying print technology using ex- pectation maximization algorithm~C~// Multi-discipli- nary Trends in Artificial Intelligence. Springer Berlin Heidelberg, 2011: 201-212.
  • 5Gehhardt J, Goldstein M, Shafait F, et al. Document authentication using printing technique features andunsupervised anomaly detection [C]// 12th Interna- tional Conference on Document Analysis and Recogni- tion. Washington, DC..IEEE Press, 2013..479-483.
  • 6Tsai M J, Liu J. Digital forensics for printed source i- dentifieationEC]// 2013 IEEE International Symposi- um on Circuits and Systems. Beijing.. IEEE Press, 2013..2347-2350.
  • 7Choi J H, Lee H Y, Lee H K. Color laser printer fo- rensic based on noisy feature and support vector ma- chine classifier[J]. Multimedia Tools and Applications, 2013, 67(2): 363-382.
  • 8Zhou Q, Yah Y, Fang T, et al. Text-independent printer identification based on texture synthesis I-J]. Multimedia Tools and Applications, 2015: DOI: 10. 1007/$11042-015-255-5.
  • 9李润方 王建军.齿轮系统动力学[M].北京:科学出版社,1997..
  • 10陈庆虎,邓伟,涂岩恺.图像整体高倍放大扫描系统:中国,200920084691[P].2010-01-20.

二级参考文献12

  • 1Lin G, Grice J, and Allebach J. Banding artifact reduction in electrophotographic printers by using pulse width modulation[J]. International Journal of Imaging Science and Technology, 2002, 46(4): 326-337.
  • 2Ali G N, Chiang P J, and Mikkilineni A K, et al.. Intrinsic and extrinsic signatures for information hiding and secure printing with electrophotographic devices[C]. Proceedings of the IS&T's NIP19: International Conference on Digital Printing Technologies, New Orleans, September, 2003: 511-515.
  • 3Chiang Pei-ju, Khanna N, and Mikkilineni A, et al.. Printer and scanner forensics[J]. IEEE Signal Processing Magazine, 2009, 26(2): 72-83.
  • 4Tu Yan-kai, Chen Qing-hu, and Liao Li-juan, et al.. Research on Print Quality Assessment and Identification: Evaluation of Print Edge Roughness[C]. International Conference on Computational Intelligence and Software Engineering, Wuhan. December 2009:1-4.
  • 5Deng Wei, Chen Qing-hu, identification based on International Conference Intelligent Systems, Wuhan and Yuan Feng, et al.. Printer distance transform[C]. IEEE on Intelligent Networks and January 2008: 565-568.
  • 6Paumard J and Aubourg E. Adjusting astronomical images using a censored Hausdorff distance[C]. International Conference on Image Processing, Santa Barbara, October 1997:232-235.
  • 7Huttenlocher D P, Klanderman G A, and Rucklidge W J. Comparing images using the Hausdorff distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1993, 15(9): 850-863.
  • 8Huttenlocher D P, Rucklidge W J, and Klanderman G A. Comparing images using the Hausdorff distance under translation[C]. IEEE Confi on Comput. Vision Pattern Recogn, Champaign, June 1992: 654-656.
  • 9Dubuisson M P and Jain A K. A modified Hausdorff distance for object matching[C]. 12th IAPR International Conf. on Pattern Recogn. Jerusalem, October 1994: 566-568.
  • 10Sim Dong-gyu, Kwon Oh-kyu, and Park Rae-hong. Object matching algorithms using robust Hausdorff distance measures[J]. IEEE Transactions on Image Processing, 1999, 8(3): 425-429.

共引文献164

同被引文献53

引证文献4

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部