期刊文献+

一类非光滑分式优化问题的最优性条件和对偶 被引量:1

Optimality conditions and duality for a class of non-smooth fractional optimization problems
下载PDF
导出
摘要 研究了一类非光滑多目标分式优化问题,利用变分分析和广义微分中的工具,在新的凸性假设下,建立了此类优化问题有效解的必要条件和充分条件.这些结果都是用极限次微分来刻画的,这在非光滑多目标分式优化问题的研究中是一个比较新的结果,而对于极限次微分的研究是近年来国内外优化领域的研究学者比较关注的一个课题.此外,文中第二部分提出了此类优化问题的Mond-Weir对偶模型,并研究了弱对偶、强对偶的结果. This paper studies a class of non-smooth multi-objective fractional optimization problems,using the tools in variational analysis and the generalized differential,and establishes necessary conditions and sufficient conditions under some new convexity.These results,which are relatively new in the study of non-smooth multi-objective fractional optimization problems,are characterized by limiting subdifferential.And the study of limiting subdifferential is a pretty hot subject in recent years.In addition,the weak duality and the strong duality results have been obtained in Mond-Weir type duality.
作者 王国栋 陈林
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第1期43-50,共8页 Journal of East China Normal University(Natural Science)
关键词 非光滑 极限次微分 广义凸 对偶 non-smooth limiting subdifferential generalized convexity duality
  • 相关文献

参考文献7

  • 1MORDUKHOVICH B S. Variational Analysis and Generalized Differentiation h Basic Theory [M]. Berlin: Springer, 2006.
  • 2CLARKE F H. Optimization and Nonsmooth Analysis [M]. New York: Wiley-Interscience, 1983.
  • 3ROCKAFELLAR R T. Convex Analysis [M]. Princeton: Princeton University Press, 1970.
  • 4CHEN G Y, HUANG X X, YANG X Q. Vector Optimization: Set-Valued and Variational Analysis [M]. Berlin: Springer-Verlag, 2005.
  • 5SOGHORA N. Optimatlity and duality for nonsmooth multiobjective fractional programming with mixed con- straints [J]. J Glob Optim, 2008, 41: 103-115.
  • 6CHUONG T D, KIM D S. Nonsmooth semi-infinite multiobjective optimization problems [J]. J Optim Theory Appl, 2014, 160: 748-762.
  • 7CHUONG T D, KIM D S. Optimality conditions and duality in nonsmooth multiobjective optimization problems [J]. Annals of Operations Research, 2014, 217(1): 117-136.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部