期刊文献+

顾及自适应多细节层次的八叉树点云管理算法 被引量:1

Management Algorithm of Point-Cloud Data Based on Octree Concerned with Adaptive Levels of Detail
下载PDF
导出
摘要 为了解决大规模点云不易有效组织、动态可视化时冗余度大,且较难实现自适应显示的问题,提出顾及细节层次(levels of detail,LOD)的八叉树点云管理算法.该算法基于八叉树索引将扫描点限定在每个结点范围内,利用自上而下空间分割和自下而上参数计算相结合的预处理策略,减少实时阶段计算量,通过构建保守性模拟误差,使场景各处均可自动满足可视要求,并辅之以高效加速方法,实现了点云的有效组织和自适应流畅显示.实验研究表明,在优化的预处理和辅助加速策略支持下,与经典R树算法相比,该算法实时阶段计算量小,每帧自适应漫游平均时间在0.04 s以内. Large-scale point-cloud data are at dynamic visualization, and it is hard to not easy to organize effectively and have great redundancy realize the adaptive display. Aiming at these problems, a new algorithm concerned with the levels of detail (LOD) of point-cloud expression on the basis of octree structure was proposed. The algorithm assigned every scanning point into an octree node, and integrated top-down division with down-top calculation as the pretreatment strategy to reduce the amount of real-time calculation. Then it made any region meet the accuracy requirement and display speed automatically by building conservative simulation-error evaluation criteria. Furthermore, with the help of acceleration methods, large-scale point-cloud data could be organized effectively and expressed smoothly with little data redundancy. Preliminary experiments show that the algorithm has abilities to overcome the shortcoming of the classical R-tree methods; meanwhile, with the support of optimized pretreatment and assistant acceleration methods, the amount of real-time calculation is small and the time of each frame can hold within 0.04 s easily.
出处 《西南交通大学学报》 EI CSCD 北大核心 2016年第1期78-84,共7页 Journal of Southwest Jiaotong University
基金 国土资源部地学空间信息技术重点实验室开放基金(KLGSIT2014-02) 河南省教育厅科学技术研究重点项目(14A420001) 地理信息工程国家测绘地理信息局重点实验室开放基金(201318)
关键词 点云 八叉树 模拟误差 可见性裁剪 细节层次 point cloud octree simulation error visibility culling levels of detail
  • 相关文献

参考文献13

二级参考文献71

共引文献131

同被引文献26

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部