期刊文献+

屏蔽计算中空间差分格式适应性研究

Research on Adaptation of Spatial Difference Scheme in Shielding Calculation Problem
下载PDF
导出
摘要 在离散纵标方法中,空间变量的处理是求解输运方程的重要部分,对于屏蔽计算问题更加敏感。传统的菱形差分格式易产生非物理解——负通量,大多数理论采用置零修正方法解决,该方法虽能消除负通量,但会降低菱形差分的计算精度,并引发通量密度的空间震荡。本文通过研究带权重差分格式和θ权重差分格式,引入权重系数以保证外推通量密度的非负性。在θ权重差分格式基础上,研究定向θ权重差分格式,通过引入方向权重因子,使得在外推通量非负的前提下,最大程度减缓通量密度的非物理震荡。在NATELSON基准题中,与DORT计算结果对比,通量密度最大相对偏差为2.7%。通过在不同屏蔽计算问题上的应用与分析,结果表明,定向θ权重差分格式更适于屏蔽计算问题(深穿透问题)。 The processing of spatial variable is an important part of solving particle transport equation in discrete ordinates method,and it is more sensitive to the shielding calculation.It is so easy to bring negative flux for the traditional diamond difference scheme that many codes use a zero negative fixup algorithm.Although the algorithm eliminates the negative flux,however,the accuracy of diamond difference scheme is lost.Meanwhile,it causes flux distortions in space.The non-negativity of the extrapolated flux can be assured in weighted diamond difference scheme and theta weighted difference scheme.Based on the theta weighted difference scheme,the directional theta weighted difference scheme adopted directional theta weight to mitigate the distortions in some way.In the NATELSON benchmark,compared with DORT the maximum relative deviation of flux is 2.7%.The results of several shielding benchmarks demonstratethat the directional theta weighted difference scheme is more adaptable in the deep penetration problems.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2016年第1期126-130,共5页 Atomic Energy Science and Technology
基金 国家科技重大专项资助项目(2011ZX06004-007-006) 中央高校基本科研业务费专项资金资助项目(13QN34) 欧盟第七框架"超临界水冷堆燃料性能验证实验"项目资助(269908)
关键词 屏蔽计算 离散纵标方法 差分格式 定向θ权重差分格式 shielding calculation discrete ordinates method difference scheme directional theta weighted difference scheme
  • 相关文献

参考文献7

  • 1RHOADES W A, ENGLE W W, Jr. New weighted-difference formulation for discrete-ordinates calculations[J]. Transactions of the American Nuclear Society, 1977, 27:776-785.
  • 2SJODEN G, COURAU T, MANALO K, et al.Automatically tuned adaptive differencing algorithm for 3-D Sn implemented in PENTRAN[C]/// International Conference on Mathematics, Computational Methods &. Reactor Physics. New York: American Nuclear Society, 2009:1 055- 1 067.
  • 3LATHROP K D. User's guide for the TWOT- RAN (x, y) program[R]. USA: Los Alamos Seientific Laboratory, 1968.
  • 4RHOADES W A, MYNATT F R. DOT Ⅲ twodimensional discrete ordinates transport code [R]. USA: Oak Ridge National Laboratory, 1973.
  • 5SJODEN G, HAGHIGHAT A. PENTRAN^TM: Parallel environment neutral particle TRAN sport in 3-D cartesian geometry[C]// Proceedings of the Joint International Conference on Mathematical Methods and Supercomputing for Nuclear Applications. New York: American Nuclear Society, 1997: 232-234.
  • 6张鹏鹤,陈义学,张斌,臧启勇,袁龙军,陈蒙腾.ARES屏蔽程序二维输运模块开发与初步验证[J].原子能科学技术,2013,47(B12):494-498. 被引量:1
  • 7ALTAC Z, SPINRAD B I. The SKN method I : A high order transport approximation to neutron transport problems[J]. Nuclear Science and Engineering, 1990, 106: 471-479.

二级参考文献6

  • 1巨海涛,吴宏春,曹良志,周永强,姚栋,咸春宇.二维中子输运方程的非结构网格离散纵标数值解法[J].核动力工程,2006,27(3):1-5. 被引量:8
  • 2张海蕃.软件工程导论[M].北京:清华大学出版社,2003:39.
  • 3谢仲生,张育曼,张建民,等.核反应堆物理数值计算[M].北京:原子能出版社,1994:58-59.
  • 4STEPANEK J, AUERBACH T, HAELG W. Calculation of four thermal reactor benchmark problems in x-y geometry[R]. Swiss: Federal Institute for Reactor Research, 1982.
  • 5ALTAC Z, SPINRAD B I. The SKN method I : A high-order transport approximation to neutron transport problems[J]. Nucl Sci Eng, 1990, 106 : 471-479.
  • 6臧启勇,陈义学,王伟金,胡也,袁龙军,张斌,马续波.三维中子-光子离散纵标输运程序CTDOS开发与验证[J].原子能科学技术,2013,47(B06):346-349. 被引量:3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部