期刊文献+

改进的Brain Extraction Tool算法及其在脑实质分割中的应用

Improved brain extraction tool algorithm for brain parenchyma segmentation
下载PDF
导出
摘要 BET(Brain Extraction Tool)算法是一种常用的从磁共振(MRI)脑图像中分割脑实质的工具,在实际应用中发现,BET算法对正常脑实质的分割精度较高,但对有病灶的脑实质分割精度较差。根据BET算法存在的问题,改进原BET算法中不合理的u_3,简化了计算繁琐的u_2,并将其应用于分割MRI图像中的脑实质。首先:选择序列图像中间层,对其应用两次改进后的BET算法获得精确分割结果;然后:将获得的边界向其中心缩小一定比例后作为与其相邻层的初始边界再次应用修改后的算法获得该层精确边界;最后,不断重复上述步骤直至所有层分割结束。改进后的算法对脑部图像分割结果与人工分割结果的重叠率达到92.92%,而使用FSL中提供的BET工具的分割结果与人工分割结果的重叠率为88.94%。改进后的算法相比原BET算法能够更加准确地分割MRI图像中的脑实质。 Brain extraction tool (BET) algorithm is a commonly used tool for segmenting brain parenchyma from magnetic resonance image (MRI). The practical application shows BET algorithm has a higher segmentation precision for the normal brain parenehyma than the brain parenchyma with lesions. According to the existing problems of BET algorithm, the unreasonable force u3 in original BET algorithm was revised, and the force u2 with tedious calculation was simplified. The modified BET algorithm was applied to segment the brain parenchyma of MR/. The improved BET algorithm was firstly applied to the selected intermediate slice of sequence images to obtain the accurate segmentation results. The obtained boundary was narrowed to its center in accordance with a certain proportion. The narrowed boundary was taken as the original boundary of the adjacent slices, and the improved BET algorithm was used again to obtain the accurate boundary of the slice. The above procedure was repeated until all slices were segmented. The overlap rate between the segmentation results of improved algorithm and the results of artificial segmentation reached 92.92%, while the overlap rate between the segmentation results of BET provided by FSL and the results of artificial segmentation reached 88.94%. Compared with the original BET algorithm, the improved algorithm can segment the brain parenchyma from MR/more accurately.
出处 《中国医学物理学杂志》 CSCD 2016年第2期113-117,共5页 Chinese Journal of Medical Physics
基金 国家自然科学基金(60972122) 上海市自然科学基金(14ZR1427900)
关键词 BET算法 磁共振图像 脑实质 分割 brain extraction tool algorithm magnetic resonance image brain parenchyma segmentation
  • 相关文献

参考文献11

  • 1季冰,聂生东,张仁杰.基于MR图像的脑组织分割方法研究进展[J].中国医学物理学杂志,2011,28(1):2373-2377. 被引量:2
  • 2ZHONG Y, QI S, KANG Y, et al. Automatic skull stripping in brain MRI based on local moment of inertia structure tensor [C]. Proceeding of the IEEE Internation Conference on Information and Automation, 2012: 437-440.
  • 3ESKILDSEN S F, COUPI~ P, FONOV V, et al. BEAST: Brain extraction based on nonlocal segmentation technique [ J ]. Neurolm- age, 2012, 59(3): 2362-2373.
  • 4SMITH S M. Fast robust automated brain extraction LJ]. Human Brain Mapping, 2002, 17(3): 143-155.
  • 5SI~GONNE F, DALE A M, BUSA E, et al. A hybrid approach to the skull stripping problem in MRI [J]. Neurolmage, 2004, 22(3): 1060-1075.
  • 6江少锋,王文辉,冯前进,陈震,陈武凡.基于改进BET算法的MR颅脑图像脑组织自动提取[J].中国图象图形学报,2009,14(10):2029-2034. 被引量:11
  • 7LI J H, LIU X F, ZHUO J C, et al. An automatic rat brain extraction method based on a detbnnable surface model !Ji. Neurosci Methods, 2013, 218( 1 ): 72-82.
  • 8ECKER C, SUCKLING J, DEONI S C, et al. Brain anatomy and its relationship to behavior in adults with autisrn spectrum disorder [J ]. Archi Gen Psychiatry, 2012, 69(2): 195-209.
  • 9NORDAHL C W, SCHOLZ R, YANG X W, el al. Increased rate of amygdala growth in children aged 2 to 4 years with autism spectrum disorders: a longitudinal study IJ 1. Arehi Gen Psychiatry, 2012, 69(1): 53-61.
  • 10HEDDEN T, VAN DIJK K R A, SHIRE E H, et al. Failure to modu- late attentional control in advanced aging linked to white matter pat hology[ J]. Cereb Cortex, 2012, 22(5): 1038-1051.

二级参考文献22

  • 1李传富,周康源,陈曾胜,黄丹,何力,王庆临.序列颅脑CT图像的颅腔内结构自动化分割[J].中国科学技术大学学报,2006,36(2):148-152. 被引量:10
  • 2蔡华杰,田金文.三维脑分割中灰度阈值的选取方法[J].武汉理工大学学报,2006,28(4):122-124. 被引量:3
  • 3柴黎,王明泉.颅脑MRI图像的分水岭分割方法研究[J].中国生物医学工程学报,2007,26(3):384-388. 被引量:6
  • 4Smith S M. Fast robust automated brain extraction [ J]. Human Brain Mapping, 2002, 17(3) : 143-155.
  • 5Shattuck D W. Magnetic resonance image tissue classification using a partial volume model [ J ]. Neuroimage, 2001, 13 (5) : 856- 876.
  • 6Huang A, Abugharbieh R, Tam R, et al. Brain extraction using geodesic active contours [ A]. In: Proceedings of SPIE Conference on Medical Imaging 2006: Image Processing [ C ], San Diego, CA, USA, 2006, 6144: 1457-1464.
  • 7Huang A, Abugharbieh R, Tam R, et al. MRI brain extraction with combined expectation maximization and geodesic active contours [ A ]. In: Proceeding of 2006 IEEE International Symposium on Signal Processing and Information Technology [ C ] , Vancouver, Canada, 2006 : 107-111.
  • 8李谦,李庆鹏,林家瑞.改进的主动轮廓模型在脑肿瘤MRI图像轮廓提取中的应用[J].计算机与数字工程,2007,35(11):89-92. 被引量:1
  • 9李伟.基于脑MR图像的三维组织自动分割[D]南方医科大学,南方医科大学2009.
  • 10Yang J,Tian JW,Liu J,et al.A SVM algorithm based on wavelet ker-nel function for medical image segmentation. Proceedings of SPIE the International Society for Optical Engineering . 2009

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部