期刊文献+

航空发动机壳体2.5轴铣削加工刀具优选方法 被引量:1

Cutting Tool Diameter Optimizing Method for 2.5-Axis CNC Machining of Aeroengine Shell Parts
下载PDF
导出
摘要 为提高2.5轴零件数控加工过程中的加工效率和加工精度,合理选择刀具直径组合是非常必要的。然而,目前刀具的选择主要依靠工艺人员的实际生产经验或结合大量的试验确定,代价昂贵。为解决上述问题,文章提出一种基于2.5轴零件数控加工刀具直径优选方法。首先分析了2.5轴零件的结构特点,将图形区域按照加工精度要求转换为二值图像,并利用相关方法获取图像骨架;然后采用拓扑细化法获取图像的初始骨架,并结合动态骨架法进行初始骨架的修正,获得图像的准确骨架,继而得到沿骨架加工时刀具的直径分布。针对型腔类零件数控加工的算例分析表明,采用本文方法能够快速获取给定刀具数量下的最优刀具组合和相应的加工轨迹,提高了加工效率。 Reasonable choice of cutting tool diameter combination for improving the 2.5-axis parts of CNC machining in the process of processing efficiency and accuracy is necessary. However, the tool cutting selection in the current is costly, it is mainly depends on an actual production experience of processors or a large number of experiments. In order to solve the above problem, the paper proposed a cutting tool diameter optimizing method in 2.5-axis CNC machining. Firstly, we analyze the structural features of 2.5-axis parts and convert the graphic area to a binary image with the machining precision, and then using relevant methods to generate the skeleton. Secondly, the initial skeleton is obtained by the topological thinning method, in order to get the exact skeleton, we correct the initial skeleton with the dynamic skeleton method. And finally we get the tool diameter distribution along the skeleton machining. Analysis of cavity parts demonstrate that with the proposed method we can quickly obtain the most optimal tool combination and the cutting path under the given cutting tool number, and it does improve the working efficiency.
出处 《航空制造技术》 2016年第1期143-146,共4页 Aeronautical Manufacturing Technology
基金 陕西省自然科学基础研究计划资助项目(No.2014JM7274)
关键词 欧氏距离场 骨架 2.5轴加工 刀具直径 Euclidean distance field Skeleton 2.5-axis machining Cutting tool diameter
  • 相关文献

参考文献14

  • 1VEERAMANI D,GAU Y S.Selection of an optimal set of cutting-tools for a general triangular pocket.International Journal of Production Research,1997,35(9):2621-2638.
  • 2EDALEW K O,ABDALLA H S,Nash R J.A computer-based intelligent system for automatic tool selection.Materials&Design,2001,22(5):337-351.
  • 3YAO Z Y,GUPTA S K,NAU D S.Algorithm for selecting cutters in multi-part milling problems.Computer-Aided Design,2003,35(9):825-839.
  • 4VEERAMANI D,GAU Y S.Selection of an optimal set of cutting-tool sizes for 2.5D pocket machining.Computer-Aided Design,1997,29(12):869-877.
  • 5BALA M,CHANG T C.Automatic cutter selection and optimal cutter path generation for prismatic parts.International Journal of Production Research,1991,29(11):2163-2176.
  • 6LIM T,CORNEY J,CLARK D E R.Exact tool sizing for feature accessibility.International Journal of Advanced Manufacturing Technology,2000,16(11):791-802.
  • 7LIM T,CORNE W J,RITCHIE J M,et al.Optimizing tool selection.International Journal of Production Research,2001,39(6):1239-1256.
  • 8LEE Y S,CHANG T C,Application of computational geometry in optimizing 2.5D and 3D NC surface machining.Computers in Industry,1995,26(1):41-59.
  • 9CHEN Z C,ZHANG H D.Optimal cutter size determination for 2.5-axis finish machining of NURBS profile parts.International Journal of Production Research,2009,47(22):6279-6293.
  • 10CHEN Z C,FU Q.An optimal approach to multiple tool selection and their numerical control path generation for aggressive rough machining of pockets with free-form boundaries.Computer-Aided Design,2011,43(6):651-663.

二级参考文献14

  • 1余俊 周济.优化方法程序库OPB-1[M].北京:机械工业出版社,1989..
  • 2Rao S S 祁载康等(译).工程优化原理及应用[M].北京:北京理工大学出版社,1990.20-81.
  • 3Meek D S, Walton D J. Approximating quadratic NURBS Curves by Arc Splines. Computer-Aided Design, 1993,25(6) :371-377
  • 4Walton D J, Meek D S. Approximating of Quadratic Bezier Curves by Arc Splines. Journal of Computational and Applied Mathematics, 1994, 54 (1) : 107-120
  • 5Ahn Y J, Kim H O,Lee K Y. Are Spline Approximation of Quadratic Bezier Curves. Computer-Aided Design, 1998,30 (8) : 615- 620
  • 6Bolton K M. Biarc Curves. Computer-Aided Design, 1975, 7(2):89-92
  • 7Millan K Y,Desmond J W. Curve Fitting with Arc Splines for NC Toolpath Generation. Computer-Aided Design, 1994,26(11) :845-849
  • 8Ong,C J,Wong Y S, Loh H T,et al. An Optimization Approach for Biarc Curve Fitting of B-spline Curves. Compute- Aided Design, 1996, 28 (12): 951-959
  • 9Piegl L A, Tiller W. Biarc Approximation of NURBS Curves. Computer- Aided Design, 2002,34(11) : 807-814
  • 10Yong H J, Hu S M, Sun J G. Bisection Algorithm for Approximating Quadratic Bezier Curves by Arc Splines. Computer - Aided Design, 2000,32 ( 4 ) : 253-260

共引文献56

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部