期刊文献+

复杂网络混沌系统的非线性观测器同步 被引量:2

Nonlinear observers synchronization of a class of complex networks chaos systems
下载PDF
导出
摘要 针对一类复杂网络混沌系统,基于观测器方法设计了一个非线性观测器。当系统状态的非线性项满足一定条件时,可以使观测器的状态按照目标系统轨道演化,所设计的控制器简单且易于实现。结果表明一定条件下复杂网络混沌系统是非线性观测器混沌同步的。 The paper studied the synchronization problem of a class of complex networks chaos systems designing an nonlinear observer with a controller based on observer approach. When nonlinear parameters of the system meet certain conditions,the observer can be made to evolve around the target orbit and the designed controller is easy to operate. The study illustrated that complex networks systems is in synchronization under proper conditions.
出处 《陕西理工学院学报(自然科学版)》 2016年第1期89-92,共4页 Journal of Shananxi University of Technology:Natural Science Edition
基金 航空科学基金资助项目(2013ZD55006) 河南省高等学校青年骨干教师资助计划项目(2013GGJS-142) 河南省高等学校重点科研项目(15B110011)
关键词 复杂网络 混沌同步 观测器 非线性 complex networks chaos synchronization observer nonlinear
  • 相关文献

参考文献11

二级参考文献108

共引文献92

同被引文献15

  • 1ACEVES A, HOLM D D. Homoclinic orbits and chaos in a second harmonic generation optical cavity [ J ]. Phys Lett A, 1997( 1 ) :203-208.
  • 2SZLACHETKA P, GRYGIEL L. Chaos and order in second haimonic generation cumulant approach [ J ]. Phys Rev A, 1992, 46( 11 ) :7311-7314.
  • 3GRYGIEL K, SZLACHERTKA R. Chaos in second harmonic generation of light [ J ]. The case of a train of pulses. Opt Comm, 1992,91 ( 3 ) : 241-246.
  • 4GRYGIEL K,SZLACHETKA P. Lyapunov analysis of chaos in a system governing second harmonic generation of light[J] Opt Comm, 1990,73 ( 2 ) : 177-182.
  • 5SAVAGE C M, WALLS D F. Optical chaos in second-harmonic generation [ J ]. Optica Acta, 1983,30 (5) :557-561.
  • 6Pecora L M,Carroll T L.Synchronization in chaotic systems[J].Physical review letters,1990,64(8):821-824.
  • 7Stojanovski T,Kocarev L,Parlitz U.Sporadic driving of dynamical systems[J].Physical Review E,1997,55(4):4035-4048.
  • 8Xiao Xiaoqing , Zhou Lei , Zhang Zhenjuan . Synchronization of chaotic Lur′e systems with quantized sampled data controller[J].Communications in Nonlinear Science and Numerical Simulation,2014,19(6):2039-2047.
  • 9Han J Q,Ma Y C,Sun H.State observer synchronization used in the three-dimensional duffing system[J].Mathematical Problems in Engineering,2014,90:45-55.
  • 10Astrom K J,Bernhardsson B.Comparison of Riemann and Lebesque sampling for first order stochastic systems[C].Proceedings of the 41st IEEE Conference on Decision and Control,2002,2:2011-2016.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部