期刊文献+

Ni-Catalyzed Cross Coupling ofAryl Grignard Reagents with Aryl Halides in a Nonpolar Solvent and an Efficient Synthesis of Biaryls Under Neat Conditions 被引量:1

Ni-Catalyzed Cross Coupling ofAryl Grignard Reagents with Aryl Halides in a Nonpolar Solvent and an Efficient Synthesis of Biaryls Under Neat Conditions
原文传递
导出
摘要 This study details Ni-catalyzed cross coupling of aryl Grignard reagents with aryl halides in toluene, a nonpolar solvent with a high boiling point. The reaction was applied for the synthesis of various biaryls in good yields without the introduction of a large steric ligand. The Kumada-Tamao-Corriu(KTC) reaction in toluene was then successfully modified to proceed under neat conditions for the efficient syntheses of symmetrical biaryls, particularly in large-scale preparations. Unactivated aryl chlorides show higher reactivity than aryl bromides, particularly under neat conditions. Mechanistic investigations suggest a radical procedure for the catalytic cycle, and the origin of the radical intermediates being aryl halides. This study details Ni-catalyzed cross coupling of aryl Grignard reagents with aryl halides in toluene, a nonpolar solvent with a high boiling point. The reaction was applied for the synthesis of various biaryls in good yields without the introduction of a large steric ligand. The Kumada-Tamao-Corriu(KTC) reaction in toluene was then successfully modified to proceed under neat conditions for the efficient syntheses of symmetrical biaryls, particularly in large-scale preparations. Unactivated aryl chlorides show higher reactivity than aryl bromides, particularly under neat conditions. Mechanistic investigations suggest a radical procedure for the catalytic cycle, and the origin of the radical intermediates being aryl halides.
出处 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2016年第1期55-61,共7页 高等学校化学研究(英文版)
关键词 CROSS-COUPLING Nickel BIARYL Reaction mechanism Neat condition Cross-coupling Nickel Biaryl Reaction mechanism Neat condition
  • 相关文献

参考文献55

  • 1Riener K., Haslinger S., Raba A., Hogerl M. P., Cokojia M., Herrmann W. A., Kuhn F. E., Chem. Rev., 2014, 114(10), 5215.
  • 2Tasker S. Z., Standley E. A., Jamison T. F., Nature, 2014, 509, 299.
  • 3Kambe N., Iwasaki T., Terao J., Chem. Soc. Rev., 2011, 40(10), 4937.
  • 4Knappke C. E. I., Jacobi von Wangelin A., Chem. Soc. Rev., 2011, 40(10), 4948.
  • 5Cahiez G., Moyeux A., Chem. Rev., 2010, 110(3), 1435.
  • 6Rudolph A., Lautens M., Angew. Chem. Int. Ed., 2009, 48(15), 2656.
  • 7Wu X. M., Wang Y., Guo S. R., Chem. Res. Chinese Universities, 2010, 26(2), 331.
  • 8Wang Y. L., Wu Y. J., Chem. Res. Chinese Universities, 2000, 16(2), 131.
  • 9Jana R., Pathak T. P., Sigman M. S., Chem. Rev., 2011, 111(3), 1417.
  • 10Rosen B. M., Quasdorf K. W., Wilson D. A., Zhang N., Resmerita A. M., Garg N. K., Percec V., Chem. Rev., 2011, 111(3), 1346.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部