摘要
本文根据毕奥萨伐尔定理先求出任意三角形一条边所产生的磁场,再利用矢量场旋转求出另外两条边产生的磁场,最终利用矢量叠加求得任意形状的三角形电流的磁场分布.这种方法可以推广到求任意形状多边形电流的磁场求解.
In this article we introduce an novel method to calculate the magnetic field distribution of an arbitrary triangular electric current. Firstly the magnetic field of any edge can be gotten according the Biot-Savart Law. Then the magnetic field of other two edges could be obtained by using vector field rotation. At last we can get the total magnetic field of an arbitrary triangular electric current through principal of vector field superposition. This method could also be extended to other cases about any shape polygon electric current.
出处
《物理与工程》
2016年第1期64-67,共4页
Physics and Engineering
基金
黑龙江省高等教育教学改革项目(项目编号:JG2013010198)
关键词
任意形状三角形电流
磁场分布
矢量场旋转
arbitrary triangular electric current
magnetic field distribution
vector field rotation