期刊文献+

沉积压力对氢化非晶硅薄膜特性的影响 被引量:1

The Influence of Deposition Pressure on the Properties of Hydrogenated Amorphous Silicon Thin Films
下载PDF
导出
摘要 采用等离子增强化学气相沉积(PECVD)系统,以乙硅烷和氢气为气源,普通钠钙玻璃为衬底制备了氢化非晶硅(a-Si∶H)薄膜,研究了沉积压力对非晶硅薄膜的沉积速率、光学带隙以及结构因子的影响。采用台阶仪、紫外可见分光光度计、傅里叶变换红外光谱仪和扫描电子显微镜等手段分别表征了a-Si∶H薄膜的沉积速率,光学带隙、结构因子和表面形貌。结果表明:随着沉积压力的增加,沉积速率呈现先上升后下降的趋势,光学带隙不断下降。当沉积压力小于210Pa时,以SiH键存在的H原子较多,而以SiH2或SiH3等形式存在的H较少;当沉积压力大于210Pa时,以SiH2,(SiH2)n或SiH3等形式存在的H较多。通过结构因子的计算,发现沉积压力在110~210Pa的范围内沉积的薄膜质量较好。 Hydrogenated amorphous silicon(a-Si∶H)thin films on soda-lime glass substrates were deposited by plasma enhanced chemical vapor deposition(PECVD)using disilane and hydrogen as source gases.To study the influence of deposition pressure on the deposition rate,optical band gap and structure factor,a surface profilometer,an ultraviolet-visible spectrometer,a Fourier transform infrared(FTIR)spectrometer and a scanning electron microscopy(SEM)were used to characterize the deposited thin films.It is found that the deposition rate firstly increased and then decreased and the optical band gap monotonically decreased with the increasing deposition pressure.Moreover,the formation of SiH bond was preferable to the formation of SH2 or SiH3bond when the deposition pressure was less than 210 Pa,while it was opposite when the deposition pressure is higher than 210 Pa.Finally,the deposition pressure in the range of 110~210Pa was found to be more suitable for the preparation of high quality a-Si∶H thin films.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第2期326-330,共5页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(51362031 U1037604) 四川省教育厅科研项目(15ZB0317)资助
关键词 PECVD 沉积压力 沉积速率 光学带隙 结构因子 PECVD Deposition pressure Deposition rate Optical band gap Structure factor
  • 相关文献

参考文献20

  • 1Davydova E, Timoshkin A, Sevastianova T, et al. Molecular Physics, 2009, 107(8-12): 899.
  • 2Kim Taehwan, Kim Dong-Hyun, Lee Ho-Jun. The Transactions of The Korean Institute of Electrical Engineers, 2014, 63(2): 250.
  • 3Kim D Y, Guijt E, Zeman M, et al. Progress in Photovoltaics: Research and Applications, 2015, 26(6): 671.
  • 4Huang Jungjie,Chen Chaonan. Thin Solid Films,2013, 529: 454.
  • 5Lee Shuo-Jen, Chen Yi-Ho, Hu Sung-Cheng, et al. Journal of Alloys and Compounds, 2013, 558: 95.
  • 6Lee S W, Seo J M, Koo J H, et al. Thin Solid Films, 2010, 519(2): 823.
  • 7Shalav A. Progress in Photovoltaics: Research and Applications, 2009, 17(2): 151.
  • 8águas Hugo, Ram Sanjay K, Araújo Andreia, et al. Energy & Environmental Science, 2011, 4(11): 4620.
  • 9Law Felix, Widenborg Per I, Luther Joachim, et al. Journal of Applied Physics, 2013, 113(19): 193511.
  • 10Toukabri R, Shi Y. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2013, 31(6): 061606.

二级参考文献24

  • 1Warren W L, Lenahan P M, Kanicki J .1991 J. Appl. Phys. 70 2220.
  • 2Rezgui B, Sibai A, Nychyporuk T, Lemiti M, Bremond G .2009 J. Luminescence 129 1744.
  • 3黄锐 王旦清 宋捷 丁宏林 王祥 郭艳青 陈坤基 徐骏 李伟 马忠元.物理学报,2010,59:5823-5823.
  • 4Molinari M, Rinnert H, Vergnat M .2007 J. Appl. Phys. 101 123532.
  • 5Wang M H, Li D S, Yuan Z Z, Yang D R, Que D L .2007 Appl. Phys. Lett. 90 131903.
  • 6Kim B H, Cho C H, Kim T W, Park N M, Sung G U .2005 Appl. Phys. Lett. 86 091908.
  • 7Gourbilleau F, Dufour C, Rezgui B, Br6mond G .2009 Mater. Sci. Eng. B 159-160 70.
  • 8Wang Y Q, Wang Y G, Cao L, Cao Z X .2003 Appl. Phys. Lett. 83 3474.
  • 9Benami A, Santana G, Ortiz A, Ponce A, Romeu D, Aguilar- Hernandez J, Contreras-Puente G, Alonso J C .2007 Nanotech- nology 18 155704.
  • 10Kang Z T, Arnold B, Summers C J, Wagner B K .2006 Nanotech- nology 17 4477.

共引文献3

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部