期刊文献+

萤火虫算法收敛分析 被引量:6

Convergence Analysis of Firefly Algorithm
下载PDF
导出
摘要 为了系统地分析萤火虫算法(firefly algorithm,FA),首先对FA算法的收敛过程进行了分析,得出FA算法收敛的两个一般条件:随机扰动项的数学期望等于0;最大吸引度β0∈(0,2),通常取β0∈(0,1],并且β0越大,算法收敛速度越快。接着根据随机算法的收敛准则,证明了FA算法不具有全局收敛特性。然后应用数学归纳法,结合夹逼定理及反证法,从理论上证明了FA算法收敛于群体最优解,是一个局部收敛算法。最后对不同条件下的FA算法收敛性进行了仿真,实验结果与理论结果一致,佐证了理论分析的正确性。 The purpose of this paper is to analyze the firefly algorithm (FA) systematically. Firstly, two general con- vergence conditions are obtained by analyzing the convergence process of FA. One is that mathematical expectation of random disturbance term is equal to 0, the other is that maximum attractiveness value β0 belongs to (0,2), and usu- ally belongs to (0,1 ], and the more β0 value, the faster convergence speed. Nextly, according to the criterion of con- vergence of random algorithm, this paper proves that the FA is not a globally convergent algorithm. Then, this paper theoretically proves that the FA converges to the local optimal solution by using mathematical induction, sandwich theorem and apagoge. Finally, the convergence processes of FA under different conditions are simulated. The experi- mental results agree well with the theoretical results and prove the correctness of the theory analysis.
作者 陆克中 孙俊
出处 《计算机科学与探索》 CSCD 北大核心 2016年第2期293-300,共8页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.61170119 安徽省自然科学研究项目No.KJ2016Z264~~
关键词 萤火虫算法 收敛分析 局部收敛 firefly algorithm convergence analysis local convergence
  • 相关文献

参考文献16

  • 1Yang Xinshe. Nature-inspired metaheuristic algorithms[M]. Beckington: Luniver Press, 2008: 81-96.
  • 2Yang Xinshe. Firefly algorithms for multimodal optimiza- tion[C]//LNCS 5792: Proceedings of the 5th International Conference on Stochastic Algorithms: Foundation and Ap- plications, Sapporo, Japan, Oct 26-28, 2009. Berlin, Heidel- berg: Springer, 2009: 169-178.
  • 3Horng M H, Liou R J. Multilevel minimum cross entropy threshold selection based on the firefly algorithm[J]. Expert Systems with Applications, 2011, 38(12): 14805-14811.
  • 4Senthilnath J, Omkar S N, Mani V. Clustering using firefly algorithm: performance study[J]. Swarm and Evolutionary Computation, 2011, 1(3): 164-171.
  • 5Gandomi A H, Yang Xinshe, Alavi A H. Mixed variable structural optimization using firefly algorithm[J]. Computers and Structures, 2011, 89(23/24): 2325-2336.
  • 6Yang Xinshe, Hosseini S S S, Gandomi A H. Firefly algo- rithm for solving non-convex economic dispatch problems with valve loading effect[J]. Applied Soft Computing, 2012, 12(3): 1180-1186.
  • 7Kazema A, Sharifia E, Hussain F K, et al. Support vector regression with chaos-based firefly algorithm for stock market price forecasting[J]. Applied Soft Computing, 2013, 13(2): 947-958.
  • 8Srivatsava P R, Mallikarjun B, Yang Xinshe. Optimal test sequence generation using firefly algorithm[J]. Swarm and Evolutionary Computation, 2013, 8: 44-53.
  • 9Cheung N J, Ding Xueming, Shen Hongbin. Adaptive fire- fly algorithm: parameter analysis and its application[J]. PLoS ONE, 2014, 9(11): 1-12.
  • 10Arora S, Singh S. The firefly optimization algorithm: con- vergence analysis and parameter selection[J]. International Journal of Computer Applications, 2013, 69(3): 48-52.

二级参考文献10

共引文献13

同被引文献38

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部