期刊文献+

一种面向语义重叠社区发现的Link-Block算法 被引量:10

Link-Block Method for the Semantic Overlapping Community Detection
下载PDF
导出
摘要 语义社会网络是一种由信息节点及社会关系构成的新型复杂网络,传统语义社会网络分析算法在进行社区挖掘时需要预先设定社区个数,且无法发现重叠社区.针对这一问题,提出一种面向语义社区发现的link-block算法.该算法首先以LDA模型为语义信息模型,创新性地建立了以link为核心的block区域LBT(link-block-topic)取样模型;其次,根据link-block语义分析结果,建立可度量link-block区域的语义链接权重方法,实现了语义信息的可度量化;最后,根据语义链接权重建立了以link-block为单位的聚类算法以及可评价语义社区的SQ模型,并通过实验分析,验证了该算法及SQ模型的有效性及可行性. Since the semantic social network (SSN) is a new kind of complex networks, the traditional community detection algorithms which require presetting the number of the communities, cannot detect the overlapping communities. To solve this problem, an overlapping community structure detecting algorithm in semantic social networks based on the link-block is proposed. First, the measurement of the semantic weight of links for the link-block is established depending on the analysis of LBT. Secondly, a method to measure the semantic links weight of link-block area is developed to provide the measurement of semantic information. Thirdly, the overlapping community detection cluster method is designed, based on the semantic weight of links, with the link-block as the element. Finally, the SQ modularity for the measurement of semantic communities is obtained. The efficiency and feasibility of the algorithm and the semantic modularity are verified by experimental analysis.
出处 《软件学报》 EI CSCD 北大核心 2016年第2期363-380,共18页 Journal of Software
基金 国家自然科学基金(61370083 61370086) 教育部博士点基金(20122304110012) 黑龙江省博士后基金(LBH-Z1509 6) 黑龙江省教育厅科技项目(12531105) 黑龙江省博士后科研启动项目(LBH-Q13092)~~
关键词 语义社会网络 重叠社区 语义社区 LDA link-block semantic social network overlapping community semantic community LDA link-block
  • 相关文献

参考文献37

  • 1Yang B, Liu DY, Jin D, MA HB. Complex network clustering algorithms. Ruan Jian Xue Bao/Joumal of Software, 2009,20(1): 54-66 (in Chinese with English abstract), http://www.jos.org.cn/1000-9825/3464.htm [doi: 10.3724/SP.J.1001.2009.03464].
  • 2Girvan M, Newman MEJ. Community structure in social and biological networks. Proc. of National Academy of Science, 2002, 9(12):7921-7826. Idol: 10.1073/pnas.122653799].
  • 3Newman MEJ. Fast algorithm for detecting community structure in networks. Physical Review E, 2004,69(6):066133. [doi: 10. 1103/PhysRevE.69.066133 ].
  • 4Palla G, Derenyi I, Farkas I, Vicsde T. Uncovering the overlapping community structures of complex networks in nature and society. Nature, 2005,435(7043):814-818. [doi: 10.1038/nature03607].
  • 5Shen HW, Cheng XQ, Cai K, Hu MB. Detect overlapping and hierarchical community structure in networks. Physica A, 2009,388 (8):1706-1712. [doi: 10.1016/j.physa.2008.12.021].
  • 6Lancichinetti A, Fortunato S, Kertesz J. Detecting the overlapping and hierarchical community structure of complex networks. New Journal of Physics, 2009,11 (3):033015. [doi: 10.1088/1367-2630/11/3/033015].
  • 7Gregory S. Finding overlapping communities in networks by label propagation. New Journal of Physics, 2010,12(10): 103018. Idol: 10.1088/1367-2630/12/10/103018].
  • 8Jin D, Yang B, Baquero C, Liu DY, He DX. A Markov random walk under constraint for discovering overlapping communities in complex networks. Journal of Statistical Mechanics: Theory and Experiment, 2011,2011(5):75-98. Idol: 10.1088/1742-5468/2011/ 05/P05031].
  • 9Jin D, Yang B, Liu J, Liu DY, He DX. Ant colony optimization based on random walk for community detection in complex networks. Ruan Jian Xue Bao/Journal of Software, 2012,23(3):451-464 (in Chinese with English abstract), http://www.jos.org.crd 1000-9825/3996.htm Idol: 10.3724/SP.J.1001.2012.03996].
  • 10Gan WY, He N, Li DY, Wang JM. Community discovery method in networks based on topological potential. Ruan Jian Xue Bao/ Journal of Software. 2009,20(8):2241-2254 (in Chinese with English abstract), http://www.jos.org.cn/1000-9825/3318.htm [doi: 10 3724/SP.J. 1001.2009.03318].

同被引文献75

引证文献10

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部