期刊文献+

竞争性故障模型可靠性评估的非参数估计方法 被引量:6

Nonparametric estimation method of reliability evaluation in competitive fault model
原文传递
导出
摘要 针对航空发动机现场数据的可靠性评估面临着小子样与随机删失问题,对可靠性评估中的非参数估计方法进行了对比分析.应用蒙特卡罗方法,在竞争性故障模型下,设计了一种对比可靠性评估方法优劣性的仿真方法.该方法以三重威布尔分布为例,通过模拟产生具有随机删失特点的航空发动机现场故障数据,分别对比4种可靠性评估非参数估计方法的优劣性.最后通过一个工程应用案例验证了模型的有效性.仿真结果表明:在三重威布尔竞争性故障模型下,非参数估计方法的优劣顺序依次是Kaplan-Meier估计、平均秩次法、Herd-Johnson估计、Nelson-Aalen估计. The nonparametric estimation method of reliability evaluation was compared and analyzed for the problem of small sample and randomly censoring in the field data of aer- o-engine. Monte Carlo method was applied and a simulation method was designed to compare the reliability evaluation method within competitive fault model. Through the example of trebling Weilbull distribution, random censoring observations of aero-engine were simulated through this method by comparing four nonparametric estimation methods of reliability eval- uation. An example of engineering application was used to illustrate the validity of the meth- od. Results show that the excellence order of nonparametric estimation method is Kaplan- Meier estimation, mean rank order method, Herd-Johnson estimation and Nelson-Aalen esti- mation under the trebling Weilbull competitive fault model.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2016年第1期49-56,共8页 Journal of Aerospace Power
基金 国家自然科学基金(61374145 U1333131 71501185) 陕西省软科学技术基金(2014KRM35)
关键词 竞争性故障模型 可靠性 非参数估计 蒙特卡罗 平均秩次法 competitive fault model reliability nonparametric estimationMonte Carlo mean rank order method
  • 相关文献

参考文献18

  • 1Gebizlioglu O,~eno~lu B,Kantar Y. Comparison of certain value-at-risk estimation methods for the two-parameter Weibull loss distribution[J].. Journal of Computational and Applied Mathematics, 2011,235 (11) : 3304-3314.
  • 2王治华,傅惠民,黄蓉,张勇波.性能退化双线性过程方法与成组试验方法的比较[J].航空动力学报,2014,29(7):1562-1566. 被引量:1
  • 3刘洪于,方洋旺,张平,高翔.基于导弹现场数据的可靠性评估[J].空军工程大学学报(自然科学版),2012,13(4):41-45. 被引量:7
  • 4HAN Feng-yan QIN Zheng WANG Xin.A Censored Nonparametric Software Reliability Model[J].International Journal of Plant Engineering and Management,2006,11(4):227-233. 被引量:2
  • 5WANG Yongqiao, WANG Shouyang, DANG Chuangyin. Nonparametric quantile frontier estimation under shape re- striction[J]. European Journal of Operational Research, 2014,232(3) :671-678.
  • 6HanFengyan,LiWeisong.Nonparametric estimation for hazard rate monotonously decreasing system[J].Journal of Systems Engineering and Electronics,2005,16(1):220-223. 被引量:1
  • 7Amiri A, Crambes C, Thiam B. Recursive estimation of nonparametric regression with functional covariate[J].. Computational Statistics & Data Analysis, 2014, 69 ( 1 ) 154-172.
  • 8Shoji I, Nonparametric estimation of nonlinear dynamics by metric-based local linear approximation [J]. Statistical Methods and Applications, 2013,22 (3) : 341-353.
  • 9Frydman H, LIU Jun. Nonparametric estimation of the cu- mulative intensities in an interval censored competing risks model[J]. Lifetime Data Analysis, 2013,19 (1) 77-79.
  • 10WANG Chunjie, SUN Jianguo, SUN Liuquan. Nonpara- metric estimation of current status data with dependent censoring[J]. Lifetime Data Analysis, 2012,18(4) : 434-445.

二级参考文献88

  • 1吴耀国,周杰,王柱,曾艳.随机删失数据下基于EM算法的Weibull分布参数估计[J].四川大学学报(自然科学版),2005,42(5):910-913. 被引量:12
  • 2邓爱民,陈循,张春华,汪亚顺.基于性能退化数据的可靠性评估[J].宇航学报,2006,27(3):546-552. 被引量:133
  • 3贺国芳.现场可靠性数据的区间图估计[J].电子产品可靠性与环境试验,1997,15(1):19-24. 被引量:2
  • 4陆家鼎.随机截尾数据处理方法.数理统计与管理,1990,9(4):16-20.
  • 5Crow L H. Reliability analysis for complex repairable systems[M]//Proschan F, Serfling R J. Reliability and Biom etry, Statisticalandysis of Life Length. Philadelphia:SIAM,1974:379-410.
  • 6Guida M, Calabria R, Pulcini G. Bayes inference for a non homogeneous poisson process with power intensity law[J]. IEEE Trans. Reliability, 1989, 38(5):603-609.
  • 7Bar-Lev S K, Lavi I, Reiser B. Bayesian inference for the power law process[J]. Ann. Inst. Statist. Math. , 1992, 44(4) :623-639.
  • 8Sen A, Khattree R. On estimating the current intensity of failure for the power-law process[J]. Journal of Statistical Planning and Inference, 1998, 74 : 253-272.
  • 9Sen A. Bayesian estimation and prediction of the intensity of the power law process[J]. J. Statist. Comput. Simul. , 2002, 72(8):613-631.
  • 10Gilks W R, Richardson S, Spiegelhalter D J. Full conditional distributions [M]//Markov Chain Monte Carlo in Practice. London: Chapman and Hall, 1996.

共引文献37

同被引文献45

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部