期刊文献+

基于shearlet与PCNN的多聚焦图像融合方法 被引量:1

Fusion Method for Multi-focus Images Based on Shearlet and Pulse Coupled Neural Networks
下载PDF
导出
摘要 针对传统脉冲耦合神经网络(PCNN)模型在多聚焦图像融合领域应用中面临的参数繁杂等问题,提出一种基于剪切波(shearlet)变换与改进型PCNN的多聚焦图像融合方法。相比以往的变换域方法,shearlet具有理想的图像信息捕捉性能以及较低的计算复杂度,因此,可利用shearlet将待融合图像进行多尺度多方向分解。其次,对经典PCNN模型加以改进,综合运用清晰度水平以及协调矩阵完成低频子带图像以及一系列高频子带图像的融合过程。最后,运行shearlet反变换得到最终融合图像。仿真实验选取了若干组待融合图像进行仿真,验证了该方法在主、客观评价两方面的优越性。 In order to settle the problem that there are so many parameters in the Pulse Coupled Neural Networks (PCNN)model when used in the area of multi-focus image fusion,a fusion method for multi-focus images based on shearlet transform and improved PCNN is proposed. Compared with the past transform domain methods,shearlet possesses much better ability to capture the image information and much lower computational complexities,so it can be used to conduct the multi-scale and multi-directional decompositions towards the source images. Besides,with the definition level and coordinate matrix,the classic PCNN model can be improved to fuse the low-frequency sub-images and a series of high-frequency ones. Finally,the final fused image can be obtained with the inverse shearlet. Several different groups of source images have been chosen in the simulation experiments,the proposed method proves to be superior in both subjective and objective aspects.
作者 牛玲 冯高峰
出处 《火力与指挥控制》 CSCD 北大核心 2016年第2期41-46,共6页 Fire Control & Command Control
基金 国家自然科学基金(61103143) 河南省高等学校重点科研基金资助项目
关键词 剪切波变换 脉冲耦合神经网络 协调矩阵 清晰度 shearlet transform pulse coupled neural networks coordinate matrix definition level
  • 相关文献

参考文献15

  • 1CHAI Y,LI H F,LI Z F. Multifocus image fusion scheme usingfocused region detection and multiresolution [J]. OpticsCommunications,2011,284(19):4376-4389.
  • 2TAO W,ZHU C C,QIN Z C. Multifocus image fusion basedon robust principal component analysis[J]. Pattern RecognitionLetters,2013,34(9):1001-1008.
  • 3ZHAO H J,SHANG Z W,TANG Y Y,et al. Multi-focus imagefusion based on the neighbor distance[J]. Pattern Recognition,2013,46(3):1002-1011.
  • 4ISHITA D,BHABATOSH C. Multi-focus image fusion usinga morphology-based focus measure in a quad-tree structure[J]. Information Fusion,2013,14(1):136-146.
  • 5ZHANG Y X,CHEN L,ZHAO Z H,et al. Multi-focus imagefusion based on robust principal component analysis andpulse-coupled neural network [J]. Optik,2014,125(17):5002-5006.
  • 6ECKHORN R. Neural mechanisms of scene segmentation:recordings from the visual cortex suggest basic circuits orlinking field models[J]. IEEE Transactions on Neural Network,1999,10(3):464-479.
  • 7MIAO Q G,SHI C,XU P F,et al. A novel algorithm of imagefusion using shearlets[J]. Optics Communications,2011,284(6):1540-1547.
  • 8GUO K H,LABATE D. Optimally sparse multidimensionalrepresentation using shearlets[J]. SIAM Journal on MathematicalAnalysis,2007,39(1):298-318.
  • 9GUO K H,LABATE D,WANG L. Edge analysis and identificationusing the continuous shearlet transform[J]. Appliedand Computational Harmonic Analysis,2009,27(1):24-46.
  • 10LIU X,ZHOU Y,WANG J J. Image fusion based on shearlettransform and regional features[J]. International Journal ofElectronics and Communications,2014,68(6):471-477.

二级参考文献45

共引文献49

同被引文献6

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部