期刊文献+

基于改进LS-SVM的异步电机转子故障诊断 被引量:5

Rotor Fault Diagnosis of Asynchronous Motor Based on Improved LS-SVM
下载PDF
导出
摘要 为了提高异步电动机转子故障的诊断精度,给出了一种基于改进最小二乘支持向量机(LS-SVM)的多故障分类算法。首先运用FFT处理电机的定子电流信号得到信号频谱图,从中提取故障特征向量;然后将特征向量送入改进算法进行故障诊断时,在原有多分类算法的基础上引入层次分析法确定故障类别的权重,根据权重值确定故障的诊断顺序,依次进行故障分类。实验表明,改进算法用于故障诊断节省了诊断时间,提高了诊断精度,具有很好的推广前景。 In order to improve rotor fault diagnosis accuracy of the asynchronous motor,a multi-class classification algorithm based on improved Least Square Support Vector Machine (LS-SVM)is proposed. First the fault character vectors are collected from the signal spectrum that is acquired from the signals of the motor stator current fault by FFT. Then when the feature vectors are used as the inputs of the improved algorithm for fault diagnosis,the improved algorithm confirms the weight of all faults with analytic hierarchy process,determines the order of the fault diagnosis in accordance with the weight and achieves the fault classification in turn on the basis of the former multi-class algorithm. Experimental results show that the improved algorithm saves time and improves the diagnosis accuracy when it is used for fault diagnosis and it has a bright prospect for generalization.
出处 《火力与指挥控制》 CSCD 北大核心 2016年第2期136-141,共6页 Fire Control & Command Control
基金 国家自然科学基金资助项目(61370031)
关键词 转子故障诊断 FFT 最小二乘支持向量机 二叉树 rotor fault diagnosis FFT least square support vector machine binary tree
  • 相关文献

参考文献5

二级参考文献71

  • 1唐发明,王仲东,陈绵云.一种新的二叉树多类支持向量机算法[J].计算机工程与应用,2005,41(7):24-26. 被引量:50
  • 2唐发明,王仲东,陈绵云.支持向量机多类分类算法研究[J].控制与决策,2005,20(7):746-749. 被引量:90
  • 3唐万梅.BP神经网络网络结构优化问题的研究[J].系统工程理论与实践,2005,25(10):95-100. 被引量:73
  • 4程军圣,于德介,杨宇.基于EMD和SVM的滚动轴承故障诊断方法[J].航空动力学报,2006,21(3):575-580. 被引量:32
  • 5Widodo A, Yang B S. Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors [ J ]. Expert Systems with Applicahions, 2007, 33 ( 1 ) : 241 - 250.
  • 6Ravikumar B, Thukaram D, Khincha H P. Application of support vector machines for fault diagnosis in power transmission system[ J]. Iet Generation Transmission & Distribution, 2008, 2(1):119-130.
  • 7Abbasion S, Rafsanjani A, Farshidianfar A, et al. Rolling element bearings multi-fauh classification based on the wavelet denoising and support vector machine[ J ]. Mechanical Systems and Signal Processing, 2007, 21 (7) :2933 - 2945.
  • 8Acevedo F J, Maldonado S, Dominguez E, et al. Probabilistic support vector machines for multi-class alcohol identification [J]. Sensors and Sctuatiors B-Chemical, 2007, 122( 1 ) :227 - 235.
  • 9Sungmoon C,Sang H O, Soo-Young L. Suppor vector machines with binary tree architecture for multi-class classification [ J ]. Neural Information Processing-Letters and Reviews, 2004,2 (3):47-51.
  • 10Fumitake Takahashi, Shigego Abe. Decision-tree-based multiclass support vector machines, From: Http://frenchblue. scitec, kobe-u. ac. jp/abe/pdf/iconip 02 - takashi.pdf,2002.

共引文献89

同被引文献52

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部