期刊文献+

餐厨垃圾与污泥厌氧发酵产气动力学特性研究 被引量:11

Kinetics Characterization of Anaerobic Digestion of Food Waste and Sludge
下载PDF
导出
摘要 对餐厨垃圾、污水厂污泥以及餐厨垃圾与污泥混合甲烷发酵的产气能力与动力学特性进行了实验分析,餐厨垃圾在中温和高温发酵的产甲烷潜能分别是400和426 m L CH_4·g VS-1,经过120℃、20 min蒸煮除油后的餐厨垃圾在中温和高温发酵的产甲烷潜能分别是418和531 m L CH4·g VS^(-1)。经Gompertz模型计算,除油后餐厨垃圾的最大产甲烷速率Rmax比除油前提高了49.8%(中温)和19.0%(高温),但餐厨垃圾中固体有机物的产甲烷速率变化不明显。在餐厨垃圾机械破碎匀浆过程中,部分固体有机物被液化,中、高温发酵产气过程的一级动力学呈现两阶段特征,液相有机物在中温发酵的产甲烷速率(速率常数k=0.195 5 d^(-1))略快于高温(k=0.154 3 d^(-1));而固体有机物在高温条件下的产甲烷速率(k=0.080 4 d^(-1))快于中温(k=0.038 8 d^(-1))。除油后餐厨垃圾中的固体有机物和污泥高温发酵的产甲烷速率也快于中温发酵,表明高温发酵有利于提高固体有机物的产气速率。污泥的产气潜能较低,产气速率慢,与餐厨垃圾共发酵有助于调节碱度和防止发酵体系的酸化。 The biogas production kinetics characterization of food waste, sludge and the mixture of food waste and sludge were investigated in mesophilic and thermophilic anaerobic digestion system. The methane potential of food waste were 400 and 426 m LCH_4·g VS^(-1) in mesophilic and thermophilic anaerobic system and then increased to 418 and 513 m LCH_4·g VS^(-1) after oil removing(boiling at 120 oC for 20 mins). The maximum of methane production, Rmax obtained from Gompertz model, was increase by 49.8% and 19.0% after oil removing, nevertheless, there were no significant increment of methane production rate of the solid fraction of oil removed food waste. Grinding of food waste partially liquefied food waste. The methane production was faster in mesophilic with constant k of first order kinetics of 0.195 5 d^(-1) than that in thermophilic with a k of 0.154 3 d^(-1). However, the methane production from solid fraction of food waste was faster in thermophilic(k of 0.080 4 d^(-1)) than that in mesophilic process(k of 0.038 8 d^(-1)), the same results were obtained for solid fraction of oil removed food waste and sludge. The sludge provide a lower gas production potential and lower production rate.
出处 《新能源进展》 2016年第1期1-9,共9页 Advances in New and Renewable Energy
基金 科技部中小企业发展专项资金欧国际合作项目(SQ2013ZOA000017) 北京市科技计划项目(D141100001214001 Z151100001115010)
关键词 餐厨垃圾 污泥 中温发酵 高温发酵 产气动力学 food waste sludge mesophilic fermentation thermophilic fermentation kinetics
  • 相关文献

参考文献18

  • 1任连海,黄燕冰,王攀,张明露.含油率对餐厨垃圾干式厌氧发酵的影响[J].环境科学学报,2015,35(8):2534-2539. 被引量:17
  • 2LIU X, WANG W, SHI YC, et al. Pilot-scale anaerobicco-digestion of municipal biomass waste and wasteactivated sludge in China: Effect of organic loading rate[J].Waste Management, 2012, 32: 2056-2060. http://dx.doi.org/10.1016/j.wasman.2012.03.003.
  • 3李玉友,牛启桂.有机废弃物厌氧发酵技术展望[J].生物产业技术,2015(3):35-42. 被引量:3
  • 4DINSDALE R M, HAWKES F R, HAWKES D L.Mesophilic and thermophilic anaerobic digestion withthermohpilic pre-acidification of instant-coffee-productionwastewater[J]. Water research, 1997, 31(8): 1931-1938.
  • 5KOMEMOTO K, LIM Y G, NAGAO N, et al. Effect oftemperature on VFA’s and biogas production in anaerobicsolubilization of food waste[J]. Waste management, 2009,29(12): 2950-2955.
  • 6ISA M H, FAROOQI I H, SIDDIQI R H. Methanogenicactivity test for study of anaerobic processes[J]. Indianjournal of environmental health, 1993, 35(1): 1-8.
  • 7LI Q, QIAO W, WANG X C, et al. Kineticcharacterization of thermophilic and mesophilic anaerobic digestion for coffee grounds and wasteactivated sludge[J]. Waste management, 2015, 36: 77-85.
  • 8野池达野. 甲烷发酵[M]. 刘兵, 薛咏海, 译. 北京:化学工业出版社, 2014.
  • 9BUSWELL A M, MUELLER H F. Mechanism of methanefermentation[J]. Industrial and engineering chemistry, 1952,44(3): 550-552.
  • 10ZHANG R H, EL-MASHAD H M, HARTMAN K, et al.Characterization of food waste as feedstock for anaerobicdigestion[J]. Bioresource technology, 2007, 98(4):929-935.

二级参考文献26

  • 1吴满昌,孙可伟,李如燕.有机生活垃圾高温干式厌氧处理技术探讨[J].能源研究与信息,2005,21(4):187-191. 被引量:26
  • 2赵杰红,张波,蔡伟民.温度对厨余垃圾两相厌氧消化中水解和酸化过程的影响[J].环境科学,2006,27(8):1682-1686. 被引量:48
  • 3马磊,王德汉,曾彩明.餐厨垃圾的干式厌氧消化处理技术初探[J].中国沼气,2007,25(1):27-30. 被引量:35
  • 4Chen Y, Cheng J J, Creamer K S. Inhibition of anaerobic digestion process:a review. Bioresottrce Technology, 2008, 99( 10):4044-4064.
  • 5Liu Y. Handbook of Hydrocarbon and Lipid Microbiology. Springer, 2010: 547-558.
  • 6轻工业环境保护研究所.中国沼气工程产业发展研究产出三.中国沼气产业发展路线图,2011.
  • 7Japan Association of Rural Resource Recycling Solutions. Reference System for information of biomass technology, 2014.
  • 8Cheng S S. Chao Y C, Yang K H, et al, Process recovery of biohydrogenation in a pilot plant from methanogens invasion. International Journal of Hydrogen Energy, 2011, 36(14):8779-8784.
  • 9Demitry M E. MeFarland M J. Defining full-scale anaerobic digesion stability: theease of central weber sewer improvement district. Environment and Pollution, 2015, 4(2): 1.
  • 10Femandez-Rodriguez J, Parez M, Romero L I. 2013. Comparison of mesophilic and thermophihc dry anaerobic digestion of OFMSW: Kinetic analysis [ J ].Chemical Engineering Journal, 232 : 59-64.

共引文献42

同被引文献94

引证文献11

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部