摘要
The electronic properties and topological phases of ThXY (X = Pb, Au, Pt, Pd and Y = Sb, Bi, Sn) compounds in the presence of spin-orbit coupling, using density functional theory are investigated. The ThPtSn compound is stable in the ferromagnetic phase and the other ThXY compounds are stable in nonmagnetic phases. Band structures of these compounds in topological phases (insulator or metal) and normal phases within generalized gradient approximation (GGA) and Engel- Vosko generalized gradient approximation (GGA_EV) are compared. The ThPtSn, ThPtBi, ThPtSb, ThPdBi, and ThAuBi compounds have topological phases and the other ThXY compounds have normal phases. Band inversion strengths and topological phases of these compounds at different pressure are studied. It is seen that the band inversion strengths of these compounds are sensitive to pressure and for each compound a second-order polynomial fitted on the band inversion strengths-pressure curves.
The electronic properties and topological phases of ThXY (X = Pb, Au, Pt, Pd and Y = Sb, Bi, Sn) compounds in the presence of spin-orbit coupling, using density functional theory are investigated. The ThPtSn compound is stable in the ferromagnetic phase and the other ThXY compounds are stable in nonmagnetic phases. Band structures of these compounds in topological phases (insulator or metal) and normal phases within generalized gradient approximation (GGA) and Engel- Vosko generalized gradient approximation (GGA_EV) are compared. The ThPtSn, ThPtBi, ThPtSb, ThPdBi, and ThAuBi compounds have topological phases and the other ThXY compounds have normal phases. Band inversion strengths and topological phases of these compounds at different pressure are studied. It is seen that the band inversion strengths of these compounds are sensitive to pressure and for each compound a second-order polynomial fitted on the band inversion strengths-pressure curves.